Injection molding is a polymer processing technology used for manufacturing parts with elastic hinges. Elastic hinges are widely used in FMCG (Fast Moving Consumer Goods) packaging (e.g., bottle closures of shampoos, sauces) and in the electrical engineering industry. Elastic hinge is a thin film that connect two regions of the injection molded part, where significant shear rates are present, which can lead to the degradation of polymers and the decrease in mechanical properties. Selective induction heating is the method that improves the flow of the polymer melt through thin regions by the local increase in mold temperature. In this study, selective induction heating was used to improve mechanical properties of elastic hinges by the reduction of material degradation due to high shear rates. To verify the change of shear rates, selective induction heating simulation and injection molding simulations were performed. The linear relation between mold temperature and maximum shear rate in the cross-section was identified and the mechanical tests showed significant differences in hinge stiffness, tensile strength and elongation at break.
The use of selective induction heating of molding surfaces allows for better filling of molding cavities and has a positive effect on the properties of molded products. This is particularly important in the production of parts that include flexible hinges, which are thin plastic layers connecting two or more parts of the product. By using hinges, it is possible to expand the use of injection molding products and their capabilities. They are widely used in the production of parts for the electrical engineering industry and for packaging Fast Moving Consumer Goods (FMCG). The use of hinges also entails specific reductions in wall thickness. Increases in the shear rate can be expected, which can lead to the degradation of polymers and deterioration of mechanical properties of materials. This paper investigates injection molded flexible hinge parts manufactured with selective induction heating to improve their properties. To verify the efficiency of reduction of material degradation due to high shear rates, open/close tests of elastic hinges were performed. The linear relation between the number of cycles the hinges can withstand, mold temperature and injection time was identified, where mold temperature was the more significant factor.
The main method to improve the filling of the cavity by the polymer melt is to increase the mold temperature. Rapid temperature cycling (RTC) technologies have been used around the world for several years, improving the quality of injection molded parts with a slight extension of production time. The present work focuses on the application of induction heating technology in the injection molding process since it is the most effective and most intensively developing method of heating in modern RTC technologies. In this research, the application of the induction heating process for selected surfaces was investigated with particular emphasis on the dynamics of the process. The numerical simulations were used to study the influence of the number of coils, the distance between coils and cavity surface and the mold material was examined with and without the presence of a magnetic concentrator. According to the obtained results, several crucial conclusions were made: the efficiency of heating is directly correlated with the distance between the inductor and the mold surface, the presence of magnetic flux concentrator significantly improves the homogeneity of temperature distribution and heating efficiency, application of aluminum mold lowers the obtained surface temperature.
Continuous increase in demand for electricity causes that electrotechnical industry is relentlessly under pressure of technological development. It is necessary to reduce costs while increasing a reliability of manufactured products. Common miniaturization of products mounted in land vehicles, vessels and airplanes along with limitation of their weight requires the use of innovative production methods. This publication presents the problem of exploitation related with reliable assembly and disassembly of rail-mounted electrical connectors. In order to improve the reliability of injected electrical connector housings, the authors proposed the selective induction heating technology as a heating method of injection mould. To reveal the origin of the problem, in case of this work, the simulation studies of filling the mould cavity were carried out. They show an incorrect localization of polymer streams weld line. Then the results of the simulation and induction heating experiment are presented. They were necessary for the proper design and make of the injection mould. In the final stage, the experimental tests of the manufactured housings assembly and disassembly were performed in conditions corresponding to the actual conditions. The obtained results show, that selective induction heating technology has significantly improved the reliability of rail-mounted electrical connector housings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.