This work aims to investigate the process of obtaining highly filled glass and carbon fiber composites. Composites were manufactured using previously obtained cellulose derived polyol, polymeric methylene diphenyl diisocyanate (pMDI). As a catalyst, dibutyltin dilaurate 95% and Dabco® 33‑LV were used. It was found that the addition of carbon and glass fibers into the polymer matrix causes an increase in the mechanical properties such as impact and flexural strength, Young’s modulus, and hardness of the material. Moreover, the dynamic mechanical analysis (DMA) showed a significant increase in the material’s storage modulus and rigidity in a wide range of temperatures. The increase in glass transition of soft segments can be noticed due to the limitation of macromolecules mobility in the material. The thermogravimetric analysis showed a four step decomposition, with maximal degradation rate at TmaxII = 320–330 °C and TmaxIII = 395–405 °C, as well as a significant improvement of thermal stability. Analysis of the material structure using a scanning electron microscope showed the presence of material defects such as voids, fiber pull‑outs, and agglomerates of both fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.