Construction program, spatial, architectural, and structural decisions taken in the early stages of a project have a significant impact on meeting the goals and needs of the client. The use of principles and methods of value management allows for an in-depth analysis of the project assumptions from the investor’s perspective and leads to the best ratio of the project’s utility value/sustainability to the price of its implementation. However, analysis of literature sources allows to state that optimization of the economic value of the project takes place only in the preimplementation phase of the project. This paper presents the original concept of combining issues of construction project’s utility and economic value optimization. The model enables the maximization of the utility value of the subject of the project, taking into account its economic parameters. To support the implementation of the model, a schedule optimization procedure was developed using metaheuristic algorithm. The model was demonstrated on the basis of a case study. The presented proprietary approach to optimize the construction schedule taking into account the economic and sustainability of a construction project can be used in “design and build” projects, with particular emphasis on projects managed in the sustainable Project Management system.
Investment and construction plans, architectural and construction decisions, and spatial and technology-related decisions made at the early stages of a project have a significant impact on meeting the investment goals and customer expectations. Decision making is a very time-consuming and complicated process (due to the complexity of construction processes). The whole difficulty comes to specifying the appropriate criteria for assessing the given activities, providing answers to the questions of the decision-making bodies. A set of appropriate criteria and mathematical tools (such as computer algorithms with multi-criteria analysis) can significantly improve and accelerate the decision-making process. This article combines ESORD (an IT tool that allows you to compare different types of solutions based on mathematical calculations) with the Monte Carlo method. The developed approach can help the investor to optimize their cash-flow schedule. The original method enables the client to select a construction project variant characterized by the best economical and sustainable parameters, while taking into account customers’ demands.
Paper presents utilized innovative setup for eddy current tomography and possibility of its utilization in automotive industry. Described tomography setup is designed for testing axisymmetric objects thus motor valve was selected for exemplary testing. Tests were conducted on motor valve in original state. Afterwards reference defect was created on element and measurements were repeated. Significant difference between tests results were observed, thus potential for utilization in automotive industry was confirmed. Finite element method simulations were applied in order to confirm the measurement results. Calculations were conducted in open-source finite element method software, which solves Maxwell equations in the A-V form. Modelling results confirm possibility of finite element method-based inverse tomography transformation.
The anhysteretic magnetization curve is the key element of modeling magnetic hysteresis loops. Despite the fact that it is intensively exploited, known models of anhysteretic curve have not been verified experimentally. This paper presents the validation of four anhysteretic curve models considering four different materials, including isotropic, such as Mn-Zn soft ferrite, as well as anisotropic amorphous and nanocrystalline alloys. The presented results indicate that only the model that considers anisotropic energy is valid for a wide set of modern magnetic materials. The most suitable of the verified models is the anisotropic extension function-based model, which considers uniaxial anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.