The accuracy of photogrammetric reconstruction depends largely on the acquisition conditions and on the quality of input photographs. This paper proposes methods of improving raster images that increase photogrammetric reconstruction accuracy. These methods are based on modifying color image histograms. Special emphasis was placed on the selection of channels of the RGB and CIE L*a*b* color models for further improvement of the reconstruction process. A methodology was proposed for assessing the quality of reconstruction based on premade reference models using positional statistics. The analysis of the influence of image enhancement on reconstruction was carried out for various types of objects. The proposed methods can significantly improve the quality of reconstruction. The superiority of methods based on the luminance channel of the L*a*b* model was demonstrated. Our studies indicated high efficiency of the histogram equalization method (HE), although these results were not highly distinctive for all performed tests.
Data concerning heritage buildings are necessary for all kinds of building surveying and design. This paper presents a method for creating a precise model of a historical architectural and landscape object with complex geometry. Photogrammetric techniques were used, combining terrestrial imaging and photographs taken using UAVs. In large-scale objects, it is necessary to divide the reconstruction into smaller parts and adopt an iterative approach based on the gradual completion of missing fragments, especially those resulting from occlusions. The model developed via the reconstruction was compared with geometrically reliable data (LAS point clouds) available in the public domain. The degree of accuracy it achieved can be used in conservation, for example, in construction cost estimates. Despite extensive research on photogrammetric techniques and their applicability in reconstructing cultural heritage sites, the results obtained have not yet been compared by other researchers with LAS point clouds from the information system for land cover (ISOK).
The creation of accurate three-dimensional models has been radically simplified in recent years by developing photogrammetric methods. However, the photogrammetric procedure requires complex data processing and does not provide an immediate 3D model, so its use during field (in situ) surveys is infeasible. This paper presents the mapping of fragments of built structures at different scales (finest detail, garden sculpture, architectural interior, building facade) by using a LiDAR sensor from the Apple iPad Pro mobile device. The resulting iPad LiDAR and photogrammetric models were compared with reference models derived from laser scanning and point measurements. For small objects with complex geometries acquired by iPad LiDAR, up to 50% of points were unaligned with the reference models, which is much more than for photogrammetric models. This was primarily due to much less frequent sampling and, consequently, a sparser grid. This simplification of object surfaces is highly beneficial in the case of walls and building facades as it smooths out their surfaces. The application potential of the IPad LiDAR Pro is severely constrained by its range cap being 5 m, which greatly limits the size of objects that can be recorded, and excludes most buildings.
This paper presents an innovative computer graphic method for viewshed generation from big point clouds. The proposed approach consists in simplification of typical methods for viewshed formation that are based on sorting and binary trees. The proposed method is based on the k-d tree concept optimized with radial segmentation and a dedicated mathematical algorithm for subtree rejection. The final visualization of the viewshed is designed with a graphic method using triangulated irregular network (TIN) surfaces from the accepted subtrees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.