This phase II trial aimed to evaluate the tolerance and efficacy of radical radiotherapy or chemoradiotherapy in patients with primarily inoperable gastric cancer. The analysis was based on 13 patients with primarily inoperable gastric cancer. A total of 6 (46.2%) patients refused surgery and 7 (53.8%) had contraindications to anesthesia due to cardiological or respiratory reasons (4 and 3 patients, respectively). The treatment regimen consisted of radiotherapy and chemotherapy based on 5-fluorouracil. Half of the patients were not qualified to receive chemotherapy due to the presence of comorbidities. A total dose of 45 Gy was administered in 25 fractions. Of the 13 patients who started treatment, 12 (92.3%) completed radiotherapy. Local treatment response was observed in 6/12 patients (50%), with 5/12 (41.7%) displaying clinical complete response and 1/12 (8.3%) partial response. The 1- and 3-year overall survival rates and the median survival were 59 and 48% and 17.1 months, respectively. In conclusion, radical radiotherapy, either alone or in combination with chemotherapy, is safe for patients with inoperable locally advanced gastric cancer and may prolong survival.
BackgroundThe gastric cancer is one of the most common and mortal cancer worldwide. The initial asymptomatic development and further nonspecific symptoms result in diagnosis at the advanced stage with poor prognosis. Yet, no clinically useful biomarkers are available for this malignancy, and invasive gastrointestinal endoscopy remains the only reliable option at the moment. Hence, there is a need for discovery of clinically useful noninvasive diagnostic and/or prognostic tool as an alternative (or complement) for current diagnostic tools. Here we aimed to search for serum proteins characteristic for local and invasive gastric cancer.MethodsPre-treatment blood samples were collected from patients with diagnosed gastric adenocarcinoma at the different stage of disease: 35 patients with locally advanced cancer and 18 patients with metastatic cancer; 50 healthy donors were also included as a control group. The low-molecular-weight fraction of serum proteome (i.e., endogenous peptidome) was profiled by the MALDI-ToF mass spectrometry, and the whole proteome components were identified and quantified by the LC–MS/MS shotgun approach.ResultsMulticomponent peptidome signatures were revealed that allowed good discrimination between healthy controls and cancer patients, as well as between patients with locally advanced and metastatic cancer. Moreover, a LC–MS/MS approach revealed 49 serum proteins with different abundances between healthy donors and cancer patients (predominantly proteins associated with inflammation and acute phase response). Furthermore, 19 serum proteins with different abundances between patients with locally advanced and metastatic cancer were identified (including proteins associated with cytokine/chemokine response and metabolism of nucleic acids). However, neither peptidome profiling nor shotgun proteomics approach allowed detecting serum components discriminating between two subgroups of patients with local disease who either developed or did not develop metastases during follow-up.ConclusionsThe molecular differences between locally advanced and metastatic gastric cancer, as well as more obvious differences between healthy individuals and cancer patients, have marked reflection at the level of serum proteome. However, we have no evidence that features of pre-treatment serum proteome could predict a risk of cancer dissemination in patients treated due to local disease. Nevertheless, presented data confirmed potential applicability of a serum proteome signature-based biomarker in diagnostics of gastric cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0668-9) contains supplementary material, which is available to authorized users.
Background Conformal radiotherapy is a primary treatment in head and neck cancer, which putative adverse effects depend on relatively low doses of radiation delivered to increased volumes of normal tissues. Systemic effects of such treatment include radiation-induced changes in serum lipid profile, yet dose- and volume-dependence of these changes remain to be established. Methods Here we analyzed levels of choline-containing phospholipids in serum samples collected consecutively during the radiotherapy used as the only treatment modality. The liquid chromatography–mass spectrometry (LC-MS) approach applied in the study enabled the detection and quantitation of 151 phospholipids, including (lyso)phosphatidylcholines and sphingomyelins. Results No statistically significant differences were found in the pretreatment samples from patients with different locations and stages of cancer. To compensate for potential differences between schemes of radiotherapy, the biologically effective doses were calculated and used in the search of correlations with specific lipid levels. We found that the levels of several phospholipids depended on the maximum dose delivered to the gross tumor volume and total radiation energy absorbed by the patient’s body. Increased doses correlated with increased levels of sphingomyelins and reduced levels of phosphatidylcholines. Furthermore, we observed several phospholipids whose serum levels correlated with the degree of acute radiation toxicity. Conclusion Noteworthy, serum phospholipid levels were associated mainly with volumes of normal tissues irradiated with relatively low doses (i.e., total accumulated dose 20 Gy), which indicated the importance of such effects on the systemic response of the patient’s organism to intensity-modulated radiotherapy (IMRT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.