BackgroundCannabis from hemp (Cannabis sativa and C. indica) is one of the most common illegal drugs used by drug abusers. Indian cannabis contains around 70 alkaloids, and delta-9-tetrahydrocannabinol (delta-9-THC) is the most psychoactive substance. Animal intoxications occur rarely and are mostly accidental. According to the US Animal Poison Control Center, cannabis intoxication mostly affects dogs (96%). The most common cause of such intoxication is unintentional ingestion of a cannabis product, but it may also occur after the exposure to marijuana smoke.Case presentationA 6-year-old Persian cat was brought to the veterinary clinic due to strong psychomotor agitation turning into aggression. During hospitalisation for 14 days, the cat behaved normally and had no further attacks of unwanted behaviour. It was returned to its home but shortly after it developed neurological signs again and was re-hospitalised. On presentation, the patient showed no neurological abnormalities except for symmetric mydriasis and scleral congestion. During the examination, the behaviour of the cat changed dramatically. It developed alternate states of agitation and apathy, each lasting several minutes. On interview it turned out that the cat had been exposed to marijuana smoke. Blood toxicology tests by gas chromatography tandem mass spectrometry revealed the presence of delta-9-tetrahydrocannabinol (THC) at 5.5 ng/mL, 11-hydroxy-delta-9-THC at 1.2 ng/mL, and 11-carboxy-delta-9-THC at 13.8 ng/mL. The cat was given an isotonic solution of NaCl 2.5 and 2.5% glucose at a dose of 40 mL/kg/day parenterally and was hospitalised. After complete recovery, the cat was returned to it’s owner and future isolation of the animal from marijuana smoke was advised.ConclusionsThis is the first case of a delta-9-tetrahydrocannabinol intoxication in a cat with both description of the clinical findings and the blood concentration of delta-9-THC and its main metabolites.
Purpose The aim of the study was to present the spectroscopic characteristics and crystal structure of the etazene—a benzimidazole opioid, which appeared on the illegal drug market in Poland in the last weeks. Methods The title compound was analyzed by X-ray crystallography as well as gas and liquid chromatography combined with mass spectrometry. Spectroscopic techniques have also been used, such as nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopies. Results We presented the identification and the broad chemical characterization of etazene, a synthetic opioid that has recently been introduced on the illegal drug market. Conclusions In this paper, we described single-crystal X-ray, chromatographic and spectroscopic characterization of a synthetic opioid that emerged on the new psychoactive substance (NPS) market in Poland. To the best of our knowledge, this is the first full characterization of etazene. Analytical data presented in the work can be helpful in identification and detection of the NPS in forensic and clinical laboratories.
Purpose The emergence of novel psychoactive substances (NPS) has been being a continuous and evolving problem for more than a decade. Every year, dozens of new, previously unknown drugs appear on the illegal market, posing a significant threat to the health and lives of their users. Synthetic cathinones are one of the most numerous and widespread groups among NPS. The purpose of this work was to identify and summarize available data on newly emerging cathinones in very recent years. Methods Various online databases such as PubMed, Google Scholar, but also databases of government agencies including those involved in early warning systems, were used in search of reports on the identification of newly emerging synthetic cathinones. In addition, threads on various forums created by users of these drugs were searched for reports on the effects of these new substances. Results We have identified 29 synthetic cathinones that have been detected for the first time from early 2019 to mid-2022. We described their structures, known intoxication symptoms, detected concentrations in biological material in poisoning cases, as well as the countries and dates of their first appearance. Due to the lack of studies on the properties of the novel compounds, we compared data on the pharmacological profiles of the better-known synthetic cathinones with available information on the newly emerged ones. Some of these new agents already posed a threat, as the first cases of poisonings, including fatal ones, have been reported. Conclusions Most of the newly developed synthetic cathinones can be seen as analogs and replacements for once-popular compounds that have been declining in popularity as a result of legislative efforts. Although it appears that some of the newly emerging cathinones are not widely used, they may become more popular in the future and could become a significant threat to health and life. Therefore, it is important to continue developing early warning systems and identifying new compounds so that their widespread can be prevented.
We present results of our study on the stability of 4‐chloromethcathinone (4‐CMC) in authentic postmortem peripheral blood and vitreous humor samples. The stability of 4‐CMC was determined in postmortem blood samples (for a period of 90 days) and vitreous humor (30 days) at three different temperatures: −15°C, +4°C, and + 23°C. The analyses were carried out using ultra‐high‐performance liquid chromatography coupled with triple‐quadrupole tandem mass spectrometry (UHPLC‐QqQ‐MS/MS). In both materials, the lowest 4‐CMC stability was demonstrated at room temperature. The blood samples stored in a freezer (−15°C) showed stability for the entire study period (90 days), while in the case of the vitreous humor sample stored at the same temperature the concentration of the substance decreased by 53% after 30 days. The study carried out in authentic postmortem blood and vitreous humor samples confirms the previous reports of 4‐CMC instability in biological material. Authors suggest that the biological material should be stored frozen until analyses are carried out as soon as possible after collection of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.