With the increasing development of 5G and Body Area Network based systems being implemented in unusual environments, propagation inside metallic structures is a key aspect to characterize propagation effects inside ships and other similar environments, mostly composed of metallic walls. In this paper, indoor propagation inside circular metallic structures is addressed and fast fading statistical distributions parameters are obtained from simulation, being assessed with measurements at 2.45 GHz in a passenger ferry discotheque with an 8 m diameter circular shape. It is observed that, in this kind of environments, second order reflections are particularly relevant due to the walls' high reflective nature. Globally, it is concluded that the Rayleigh distribution can be used to characterize fast fading effects with no significant loss of accuracy compared to the Rice one, since a low value of the Rice parameter is observed, being below 3.1 dB, even under Line-of-Sight conditions. Moreover, it is observed that, from the fast fading viewpoint, the best transmitter position is at the circle center. INDEX TERMS Body area networks, fading characterization, metallic structures, propagation modelling.
-This paper presents an empirical propagation path loss model for corridors in office buildings. The proposed model estimates changeable character of radio signal attenuation, based on a special approach as a combination of the simple free-space model with the author's model. The measurement stand and measurement scenario are described. The propagation path loss research have been made in corridor for different frequencies in range 30 MHz to 290 MHz. A significant number of measurement results were allowed an analysis of the radio wave propagation conditions in the environment. In general, the propagation path loss increases for each measurement frequencies with length of propagation route. Based on measurement data, the new empirical propagation path loss model was developed. For this purpose, the regression analysis was made. The novelty of this model is that it could be used for estimate propagation path loss in measured environment for different radio wave frequencies. At the end, in order to justification the practical usefulness of described method for estimate a radio wave attenuation, the statistical evaluation was made. Thus, the results of the statistical analysis (ME, SEE and R 2 values) are satisfactory for each measured radio wave frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.