According to the European Standards (EN 450-1, EN 206), it is not permissible to use calcareous fly ash as an additive to concrete. However, other standards (for example, the American and Canadian ones) allow the use of high-calcium fly ash (type C) in concrete. As a result of brown coal combustion, a large amount of this type of fly ash is produced, and considerations on their use in concrete are in progress. Research into the influence of high-calcium fly ash on concrete durability is fundamental for dealing with that issue. The aim of the present research was to develop a new model of carbonation over time, also including calcareous fly ash content in the binder. The self-terminating model of carbonation is new, and not developed by other authors. In the current research, the former simplest model (a function of w/c ratio and time) is expanded with the calcareous fly ash to cement ratio. The basis is a statistically planned experiment with a large scope of two material variables (w/c ratio and fly ash to cement ratio). The main measured property is the carbonation depth after exposure to 4% of CO2 concentration (according to CEN/TS 12390-12). The model of carbonation obtained from this experiment is an output of the paper. Also, the idea of developing similar models for concrete families as a tool for designing concrete cover thickness for reinforced elements is described in the paper.
This article aims to show the possible savings in electricity costs in smart building installations with the use of new version of Raspberry Pi 3 model B + as the control unit in intelligent building automation systems. It presents a comparison of the consumption of electricity in two units used in the central control systems, i.e. a small Windows-based computer and a Raspberry microcomputer. The power consumption of these units was measured during the rest period and during standard operations in the intelligent installation system. The conducted measurements proved that the use of the new updated version of Raspberry Pi 3 model B + as the central control unit in intelligent building management systems is more economical and energy-saving.
In practice, it is usually assumed that the durability of basic structural elements should not be less than the expected durability of the building. Reinforced concrete constructions, designed and made with quality requirements, are durable. However, each reinforced concrete structure, from the moment it is made, is gradually degraded, and one of the reasons for its destruction is often the corrosion of the concrete and hence the reinforcement. For the long-term use of reinforced concrete constructions, the most important thing is that a thin protective layer on the steel surface protects the reinforcing steel from rusting. One of the most common causes of corrosion in the reinforcement is the damage of this layer as a result of the carbonation of the concrete cover. The rate of carbonation depends on many factors, such as concrete compactness, concentration of CO2, concrete moisture, content of free calcium dioxide, content of mineral additives, etc. When the carbonated layer reaches the steel reinforcement layer, protection of steel from corrosion ceases to exist. The aim of the presented research was to determine the influence of mineral additives used as a compound of concrete on the carbonation of concrete and polymer-cement composites.
This work examines the influence of iron oxide nanoparticles (Fe3O4 NPs) on neutron and gamma-ray radiation shielding characteristics of Portland cement paste. Experimental evaluations were supplemented with theoretical studies using NXCom program. Portland cement pastes with 5, 10, 15, 20, and 30 wt% of nanomagnetite cement replacement were produced. Moreover, rheological, early strength development, compressive strength, and mercury intrusion porosimetry (MIP) tests were performed. The results showed that increasing the amount of Fe3O4 NPs in a mix leads to a gradual increment in measured viscosity and yield stress. High nano-Fe3O4 content substantially impeded the early strength development process and led to a decrement in the 7- and 28-day compressive strength of cement paste. The MIP studies exhibited a gradual increment in total porosity, and average pore volume, as nano-Fe3O4 content was increased. All the macroscopic cross-sections of slow, fast and thermal neutrons constantly increased as a result of the addition of magnetite nanoparticles, with their variations being markedly linear. Similarly, gamma attenuation test results indicated that the addition of Fe3O4 powder enhances the shielding capability of paste in the energy range of interest (0.08–2.614 MeV). In conclusion, Fe3O4 nanoparticles can be successfully used in producing lead-free cementitious composites with improved gamma-ray and neutron shielding properties. However, certain drawbacks related to an increment in matrix porosity and thus a decrement in mechanical performance should be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.