The article discusses the mesh creation techniques for models of discs of axial-flow microturbines. A universal method of optimization of such devices, in terms of their strength improvement, has been proposed. The research focused on microturbines that can operate in combination with ORC systems, especially the ones whose discs have many structural components such as pins or chamfers. Calculations were done using the commercial software ANSYS Workbench. Both tetrahedral and hexahedral grids were used in the analysed models. The calculation time needed for the grid preparation was regarded as an important parameter. Therefore, the reference model was created using the disc slice method. The results obtained for the models that included the full complex geometry of the disc were compared with the results obtained for the reference model. The mesh size coefficient was defined. It enabled to simplify the strength optimisation method for discs of axial-flow microturbine and also made it more universal. After carrying out all analyses and computations, it was possible to develop a scheme of conduct during the optimization of the aforementioned expansion devices.
Today, where the production of any kind of device may have a negative impact on the environment, it is crucial to produce machines that are as efficient as possible but that can also be strong enough to withstand harsh operating conditions for a long time. That is why this paper raises the issue of the fatigue analysis of high-speed axial-flow microturbines whose components are made of commonly used 7075 aluminium alloy. The paper presents different methods that can be used to estimate and increase the fatigue life of a turbine disc. The object of study is a 10-kilowatt vapour microturbine. The various mechanical, flow and thermal loads that can occur during the operation of the microturbine have been analysed so that the most important ones can be taken into account in the final considerations. Stress calculations were performed using analytical equations, and the finite element method (FEM) was also used. Using the stresses obtained and material characteristics, fatigue analysis was conducted. Then, new hybrid calculation methods were proposed, taking into account both analytical and numerical approaches that do not require the use of ready-made programs dedicated to fatigue analysis. To verify these methods, calculations were performed for two rotor discs with different geometries. These methods can be used by both engineers and scientists in the design process of various microturbines when fatigue calculations are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.