Alveolar rhabdomyosarcoma (ARMS) is an aggressive paediatric cancer of skeletal muscle with poor prognosis. A PAX3-FOXO1 fusion protein acts as a driver of malignancy in ARMS by disrupting tightly coupled but mutually exclusive pathways of proliferation and differentiation. While PAX3-FOXO1 is an attractive therapeutic target, no current treatments are designed to block its oncogenic activity. The present work shows that the histone acetyltransferase P/CAF (KAT2B) is overexpressed in primary tumours from ARMS patients. Interestingly, in fusion-positive ARMS cell lines, P/CAF acetylates and stabilizes PAX3-FOXO1 rather than MyoD, a master regulator of muscle differentiation. Silencing P/CAF, or pharmacological inhibition of its acetyltransferase activity, down-regulates PAX3-FOXO1 levels concomitant with reduced proliferation and tumour burden in xenograft mouse models. Our studies identify a P/CAF-PAX3-FOXO1 signalling node that promotes oncogenesis and may contribute to MyoD dysfunction in ARMS. This work exemplifies the therapeutic potential of targeting chromatin-modifying enzymes to inhibit fusion oncoproteins that are a frequent event in sarcomas. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley& Sons, Ltd.
An understanding of the basic pathophysiological mechanisms of neonatal diseases necessitates detailed knowledge about the wide range of complications in the circulating fetal RBCs. Recent publications on adult red blood cells (RBCs) provide evidence that RBCs carry an active nitric oxide synthase (NOS3) enzyme and contribute to vascular functioning and integrity via their active nitric oxide synthesis. The aim of this study was to determine the effect of maternal smoking on the phenotypical appearance and functionality of fetal RBCs, based on morphological and molecular studies. We looked for possible links between vascular dysfunction and NOS3 expression and activation and its regulation by arginase (ARG1). Significant morphological and functional differences were found between fetal RBCs isolated from the arterial cord blood of neonates born to nonsmoking (RBC-NS, n = 62) and heavy-smoking (RBC-S, n = 51) mothers. Morphological variations were quantified by Advanced Cell Classifier, microscopy-based intelligent analysis software. To investigate the relevance of the newly suggested “erythrocrine” function in fetal RBCs, we measured the levels of NOS3 and its phosphorylation in parallel with the level of ARG1, as one of the major influencers of NOS3 dimerization, by fluorescence-activated cell sorting. Fetal RBCs, even the “healthy-looking” biconcave-shaped type, exhibited impaired NOS3 activation in the RBC-S population, which was paralleled with elevated ARG1 level, thus suggesting an increased redox burden. Our molecular data indicate that maternal smoking can exert marked effects on the circulating fetal RBCs, which could have a consequence on the outcome of in utero development. We hypothesize that any endothelial dysfunction altering NO production/bioavailability can be sensed by circulating fetal RBCs. Hence, we are putting forward the idea that neonatal RBC could serve as a real-time sensor for not only monitoring RBC-linked anomalies but also predicting the overall status of the vascular microenvironment.
Introduction: Decrease in the bioavailability of vasoactive nitric oxide (NO), derived from the endothelial nitric oxide synthase (NOS3), underlines vascular endothelial damage. Our expanding knowledge on adult red blood cells (RBCs) makes it supposable that RBCs might contribute to vascular function and integrity via their active NO synthetizing system (RBC-NOS3). This "rescue" mechanism of RBCs could be especially important during pregnancy with smoking habit, when smoking acts as an additional stressor and cause active change in the redox status. Methods:In this study RBC populations of 143 non-smoking (RBC-NS) and 131 smoking (RBC-S) pregnant mothers were examined. Morphological variants were followed by confocal microscopy and quantified by a microscopy based intelligent analysis software. Fluorescence activated cell sorting was used to examine the translational and posttranslational regulation of RBC-NOS, Arginase-1 and the formation of the major product of lipid peroxidation, 4-hydroxy-2-nonenal. To survey the rheological parameters of RBCs like elasticity and plasticity atomic force microscopy-based measurement was applied. Results: Significant morphological and functional differences of RBCs were found between the non-smoking and smoking group. The phenotypic variations in RBC-S population, even the characteristic biconcave disc-shaped cells, could be connected to impaired NOS3 activation and are compromised in their physiological properties. Membrane lipid studies reveals an elevated lipid oxidation state well paralleled with the changed elastic and plastic activities.Conclusion: These features can form a basic tool in the prenatal health screening conditions, hence the compensatory mechanism of RBC-S population completely fails to sense and rescue the acute oxidative stress conditions. Implications:Under the influence of cigarette smoke RBCs become a source of reactive oxygen and nitrogen species and lose their characteristic structural and functional features. RBCs could be functionally impaired, far before their detectable morphological alterations. In case of endothelial dysfunction, consequently the functional loss in the RBC-NOS3 NO production is unavailable as a compensatory mechanism. Moreover, the changed protein expression profile might even augment and synergizes the development of vascular dysfunction/comorbidities
Women are born with millions of primordial follicles which gradually decrease with increasing age and this irreversible supply of follicles completely exhausts at menopause. The fertility capacity of women diminishes in parallel with aging. The mechanisms for reproductive aging are not fully understood. We have observed a decline in Brca1 mediated DNA repair in aging rat primordial follicles. To further understand the age-related molecular changes, we performed microarray gene expression analysis using total RNA extracted from immature (18 to 20 day old) and aged (400 to 450 day old) rat primordial follicles. The results of current microarray study revealed that there were 1,011 (>1.5 fold, p<0.05) genes differentially expressed between two groups in which 422 genes were up-regulated and 589 genes were down-regulated in aged rat primordial follicles compared to immature primordial follicles. The gene ontology and pathway analysis of differentially expressed genes revealed a critical biological function such as cell cycle, oocyte meiosis, chromosomal stability, transcriptional activity, DNA replication, and DNA repair were affected by age. This considerable difference in gene expression profiles may have an adverse influence on oocyte quality. Our data provide information on the processes that may contribute to aging and age-related decline in fertility.
Effective prophylactic strategy against the current epidemic of sexually transmitted HIV-1 infection requires understanding of the innate gatekeeping mechanisms at the genital mucosa. Surfactant protein D (SP-D), a member of the collectin family of proteins naturally present in the vaginal tract, is a potential HIV-1 entry inhibitor at the cellular level. Human EpiVaginal tissues compartmentalized in culture inserts were apically exposed to HIV-1 and/or a recombinant fragment of human SP-D (rfhSP-D) and viral passage was assessed in the basal chamber containing mononuclear leukocytes. To map the gene signature facilitating or resisting the transepithelial viral transfer, microarray analysis of the HIV-1 challenged EpiVaginal tissues was performed in the absence or presence of rfhSP-D. Mucosal biocompatibility of rfhSP-D was assessed ex vivo and in the standard rabbit vaginal irritation model. The passage of virus through the EpiVaginal tissues toward the underlying target cells was associated with a global epithelial gene signature including differential regulation of genes primarily involved in inflammation, tight junctions and cytoskeletal framework. RfhSP-D significantly inhibited HIV-1 transfer across the vaginal tissues and was associated with a significant reversal of virus induced epithelial gene signature. Pro-inflammatory NF-κB and mTOR transcripts were significantly downregulated, while expression of the tight junctions and cytoskeletal genes was upheld. In the absence of virus, rfhSP-D directly interacted with the EpiVaginal tissues and upregulated expression of genes related to structural stability of the cell and epithelial integrity. There was no increment in the viral acquisition by the PBMCs present in basal chambers wherein, the EpiVaginal tissues in apical chambers were treated with rfhSP-D. The effective concentrations of rfhSP-D had no effect on lactobacilli , epithelial barrier integrity and were safe on repeated applications onto the rabbit vaginal mucosa. This pre-clinical safety data, coupled with its efficacy of restricting viral passage via reversal of virus-induced gene expression of the vaginal barrier, make a strong argument for clinical trials of rfhSP-D as a topical anti-HIV microbicide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.