Magnetic nanoparticles of iron oxide (Fe3O4 NPs) were prepared using a biosynthetic method to investigate their potential use as an adsorbent for adsorption of Pb(II) and Cd(II) from the aqueous solution. The present study for the first time used the magnetite nanoparticles from leaf extract of Portulaca oleracea for the removal of Pb(II) and Cd(II) metal ions. Characterizations for the prepared Fe3O4 NPs (PO-Fe3O4MNPs) were achieved by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmittance electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The batch adsorption process has been performed to study the effect of various parameters, such as contact time, pH, temperature, initial metal concentration, and adsorbent dose. The optimum pH for Cd(II) and Pb(II) adsorption was 6. The removal of heavy metals was found to increase with adsorbent dosage and contact time and reduced with increasing initial concentration. Langmuir, Freundlich, Khan, and Toth isotherms were used as adsorption isotherm models. The adsorption data fitted well with the Freundlich isotherm model with correlation coefficient ( R 2 > 0.94 ). The maximum adsorption capacities ( Q max ) at equilibrium were 177.48 mg/g and 108.2267 mg/g for Cd(II) and Pb(II), respectively. The kinetic analysis showed that the overall adsorption process was successfully fitted with the pseudo-second-order kinetic model. The calculated thermodynamic parameters ( ∆ G ° , ∆ H ° , and ∆ S ° ) showed that the adsorption of Cd(II) and Pb(II) ions onto PO-Fe3O4MNPs was exothermic and spontaneous. These results demonstrate that biogenic synthesized PO-Fe3O4MNPs are highly efficient adsorbents for the removal of Pb(II) and Cd(II) ions from contaminated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.