BLM and WRN, the products of the Bloom's and Werner's syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3'-->5' polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded 'bubble', as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each 'arm' of the 4-way junction is blunt-ended. Surprisingly, a 3'-tailed duplex, a standard substrate for 3'-->5' helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3'-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom's or Werner's syndrome.
Deficiency in a helicase of the RecQ family is found in at least three human genetic disorders associated with cancer predisposition and/or premature ageing. The RecQ helicases encoded by the BLM, WRN and RECQ4 genes are defective in Bloom's, Werner's and Rothmund-Thomson syndromes, respectively. Cells derived from individuals with these disorders in each case show inherent genomic instability. Recent studies have demonstrated direct interactions between these RecQ helicases and human nuclear proteins required for several aspects of chromosome maintenance, including p53, BRCA1, topoisomerase III, replication protein A and DNA polymerase delta. Here, we review this network of protein interactions, and the clues that they present regarding the potential roles of RecQ family members in DNA repair, replication and/or recombination pathways.
The introduction of CDSS for blood product ordering supported by education and physician feedback in the hematology setting had an immediate impact on improving compliance with guidelines for restrictive transfusion practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.