Nowadays, aerial robots or Unmanned Aerial Vehicles (UAV) have many applications in civilian and military fields. For example, of these applications is aerial monitoring, picking loads and moving them by different grippers. In this research, a quadrotor with a cable-suspended load with eight degrees of freedom is considered. The purpose is to control the position and attitude of the quadrotor on a desired trajectory in order to move the considered load with constant length of cable. So, the purpose of this research is proposing and designing an antiswing control algorithm for the suspended load. To this end, control and stabilization of the quadrotor are necessary for designing the antiswing controller. Furthermore, this paper is divided into two parts. In the first part, dynamics model is developed using Newton-Euler formulation, and obtained equations are verified in comparison with Lagrange approach. Consequently, a nonlinear control strategy based on dynamic model is used in order to control the position and attitude of the quadrotor. The performance of this proposed controller is evaluated by nonlinear simulations and, finally, the results demonstrate the effectiveness of the control strategy for the quadrotor with suspended load in various maneuvers.
The concept o f two-wheeled mobile manipulator (TWMM) has been proposed for its sig nificant advantage due to high maneuverability particularly in confined internal spaces. However, its unbalanced structure imposes restrictions for widespread application. Note that the nonholonomic property of a TWMM makes its control a more challenging task. In this paper, a new stabilization mechanism of TWMM is presented, and a new control method based on dynamical balancing algorithm is proposed that could effectively resolve those restrictions. To this end, a reaction wheel is considered to control the posi tion o f center o f gravity (COG), leading to a smoother motion of the robot manipulator. To make the robot be able to manipulate an object, a double inverted pendulum model (DIPM) is considered as a simplified model of the system. DIPM dynamics is used to identify and simplify the dynamics of TWMM and subsequently a supervisory control is employed to stabilize the robot via its COG position. This in turn improves the robustness o f the proposed algorithm during manipulation maneuver o f an object with unknown mass parameters. Results are compared to those of an ideal model-based algorithm that reveal the merits of the proposed control strategy.
Dynamics modelling of multi-body systems composed of rigid and flexible elements is elaborated in this article. The control of such systems is highly complicated due to severe underactuated conditions caused by flexible elements and an inherent uneven non-linear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, simulation studies for design improvement and also practical implementations. In this article, the rigid-flexible interactive dynamics modelling (RFIM) approach is proposed as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than a common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. The proposed RFIM approach is first detailed for multi-body systems with flexible joints, and then with flexible members. Then, to reveal the merits of this new approach, few case studies are presented. A flexible inverted pendulum is studied first as a simple template for lucid comparisons, and next a space free-flying robotic system that contains a rigid main body equipped with two manipulating arms and two flexible solar panels is considered. Modelling verification of this complicated system is vigorously performed using ANSYS and ADAMS programs. The obtained results reveal the outcome accuracy of the new proposed approach for explicit dynamics modelling of rigid-flexible multi-body systems such as mobile robotic systems, while its limited computations provide an efficient tool for controller design, simulation studies and also practical implementations of model-based algorithms.
The demand for water and energy in today’s developing world is enormous and has become the key to the progress of societies. Many methods have been developed to desalinate water, but energy and environmental constraints have slowed or stopped the growth of many. Capacitive Deionization (CDI) is a very new method that uses porous carbon electrodes with significant potential for low energy desalination. This process is known as deionization by applying a very low voltage of 1.2 volts and removing charged ions and molecules. Using capacitive principles in this method, the absorption phenomenon is facilitated, which is known as capacitive deionization. In the capacitive deionization method, unlike other methods in which water is separated from salt, in this technology, salt, which is a smaller part of this compound, is separated from water and salt solution, which in turn causes less energy consumption. With the advancement of science and the introduction of new porous materials, the use of this method of deionization has increased greatly. Due to the limitations of other methods of desalination, this method has been very popular among researchers and the water desalination industry and needs more scientific research to become more commercial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.