Motivation From an isolated epidemic, COVID-19 has now emerged as a global pandemic. The availability of genomes in the public domain following the epidemic provides a unique opportunity to understand the evolution and spread of the SARS-CoV-2 virus across the globe. Results We performed whole-genome sequencing of 303 Indian isolates, and analyzed them in the context of publicly available data from India. We describe a distinct phylogenetic cluster (Clade I/A3i) of SARS-CoV-2 genomes from India, which encompasses 22% of all genomes deposited in the public domain from India. Globally approximately 2% of genomes, which till date could not be mapped to any distinct known cluster fall in this clade. Conclusions The cluster is characterized by a core set of 4 genetic variants and has a nucleotide substitution rate of 1.1 x 10 -3 variants per site per year, lower than the prevalent A2a cluster. Epidemiological assessments suggest that the common ancestor emerged at the end of January 2020 and possibly resulted in an outbreak followed by countrywide spread. To the best of our knowledge, this is the first comprehensive study characterizing this cluster of SARS-CoV-2 in India.
From an isolated epidemic, COVID-19 has now emerged as a global pandemic. The availability of genomes in the public domain following the epidemic provides a unique opportunity to understand the evolution and spread of the SARS-CoV-2 virus across the globe. The availability of whole genomes from multiple states in India prompted us to analyse the phylogenetic clusters of genomes in India. We performed whole-genome sequencing for 64 genomes making a total of 361 genomes from India, followed by phylogenetic clustering, substitution analysis, and dating of the different phylogenetic clusters of viral genomes. We describe a distinct phylogenetic cluster (Clade I / A3i) of SARS-CoV-2 genomes from India, which encompasses 41% of all genomes sequenced and deposited in the public domain from multiple states in India. Globally 3.5% of genomes, which till date could not be mapped to any distinct known cluster fall in this newly defined clade. The cluster is characterized by a core set of shared genetic variants -C6312A (T2016K), C13730T (A88V/A97V), C23929T, and C28311T (P13L). Further, the cluster is also characterized by a nucleotide substitution rate of 1.4 x 10 -3 variants per site per year, lower than the prevalent A2a cluster, and predominantly driven by variants in the E and N genes and relative sparing of the S gene. Epidemiological assessments suggest that the common ancestor emerged in the month of February 2020 and possibly resulted in an outbreak followed by countrywide spread, as evidenced by the low divergence of the genomes from across the country. To the best of our knowledge, this is the first comprehensive study characterizing the distinct and predominant cluster of SARS-CoV-2 in India.
BackgroundThe "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP). However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage.ResultsThe M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent.ConclusionOur results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is coincidental with the decline of earliest settlers' population during this period.
Emerging variants of SARS-CoV-2 with increased transmissibility or immune escape have been causing large outbreaks of COVID-19 infections across the world. As most of the vaccines currently in use have been derived from viral strains circulating in the early part of the pandemic, it becomes imperative to constantly assess the efficacy of these vaccines against emerging variants. In this hospital-based cohort study, we analysed clinical profiles and outcomes of 1161 COVID-19 hospitalized patients (vaccinated with COVISHIELD (ChAdOx1) or COVAXIN (BBV-152), n = 495 and unvaccinated n = 666) in Hyderabad, India between April 24th and May 31st 2021. Viral genome sequencing revealed that >90% of patients in both groups were harbouring the Delta variant (Pango lineage B.1.617.2) of SARS-CoV-2. Vaccinated individuals showed higher neutralizing antibodies (545+-1256 AU/ml Vs 51.1+-296 AU/ml; p<0.001) and significantly decreased Ferritin (392.26+-448.4 ng/mL Vs 544.82+-641.41 ng/mL; p<0.001) and LDH (559.45+-324.05 U/L Vs 644.99+- 294.03 U/L; p<0.001), when compared to the unvaccinated group. Severity of the disease (3.2% Vs 7.2%; p=0.0039) and requirement of ventilatory support (2.8% Vs 5.9%; p=0.0154) were significantly low in the vaccinated group despite the fact that these individuals had significantly higher age and risk factors. The rate of mortality was about 50% lower (2/132=1.51%) in the completely vaccinated breakthrough infections although mortality in individuals who had received a single dose was similar to the unvaccinated group (9/269=3.35% vs 23/666= 3.45%). Our results demonstrate that both COVISHIELD and COVAXIN are effective in preventing disease severity and mortality against the Delta variant in completely vaccinated hospitalized patients.
Studies worldwide have shown that the available vaccines are highly effective against SARS-CoV-2. However, there are growing laboratory reports that the newer variants of concerns (VOCs e.g. Alpha, Beta, Delta etc) may evade vaccine induced defense. In addition to that, there are few ground reports on health workers having breakthrough infections. In order to understand VOC driven breakthrough infection we investigated 14 individuals who tested positive for SARS-CoV-2 after being administered a single or double dose of Covishield (ChAdOx1, Serum Institute of India) from the city of Varanasi, which is located in the Indian state of Uttar Pradesh. Genomic analysis revealed that 78.6% (11/14) of the patients were infected with the B.1.617.2 (Delta) variant. Notably, the frequency (37%) of this variant in the region was significantly lower (p<0.01), suggesting that the vaccinated people were asymmetrically infected with the Delta variant. Most of the patients tested displayed mild symptoms, indicating that even a single dose of the vaccine can help in reducing the severity of the disease. However, more comprehensive epidemiological studies are required to understand the effectiveness of vaccines against the newer VOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.