Observations from June to October 2016, from a surface‐based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally‐flat absorption angstrom exponent suggests most of the light absorption is from lens‐coated black carbon. The single‐scattering‐albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September–October, typically resting upon the cloud top inversion. The time period with the campaign‐maximum near‐surface light absorption and column aerosol optical depth, on 13–16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.
The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km × 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described.
Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE-Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high-sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within~2% of refractivity profiles calculated from the European Center for Medium-Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5 days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open-loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open-loop mode successfully tracked~2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high-rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.
Global Positioning System (GPS) radio occultation (RO) from low Earth-orbiting satellites has increased the quantity of high-vertical resolution atmospheric profiles, especially over oceans, and has significantly improved global weather forecasting. A new system, the Global Navigation Satellite Systems Instrument System for Multistatic and Occultation Sensing (GISMOS), has been developed for RO sounding from aircraft. GISMOS also provides high-vertical resolution profiles that are insensitive to clouds and precipitation, and in addition, provides greater control on the sampling location, useful for targeted regional studies. The feasibility of the system is demonstrated with a flight carried out during development of an Atlantic tropical storm. The data have been evaluated through a comparison with dropsonde data. The new airborne RO system will effectively increase by more than 50% the number of profiles available for studying the evolution of tropical storms during this campaign and could potentially be deployed on commercial aircraft in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.