Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoatpocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge. In another moment down went Alice after it, never once considering how in the world she was to get out again.
Los sistemas no lineales constituyen un tema de investigación de creciente interés en las últimas décadas dada su versatilidad en la descripción de fenómenos físicos en diversos campos de estudio. Generalmente, dichos fenómenos vienen modelizados por ecuaciones diferenciales no lineales, cuya estructura matemática ha demostrado ser sumamente rica, aunque de gran complejidad respecto a su análisis. Dentro del conjunto de los sistemas no lineales, cabe destacar un reducido grupo, pero a la vez selecto, que se distingue por las propiedades extraordinarias que presenta: los denominados sistemas integrables. La presente tesis doctoral se centra en el estudio de algunas de las propiedades más relevantes observadas para los sistemas integrables. En esta tesis se pretende proporcionar un marco teórico unificado que permita abordar ecuaciones diferenciales no lineales que potencialmente puedan ser consideradas como integrables. En particular, el análisis de integralidad de dichas ecuaciones se realiza a través de técnicas basadas en la Propiedad de Painlevé, en combinación con la subsiguiente búsqueda de los problemas espectrales asociados y la identificación de soluciones analíticas de naturaleza solitónica. El método de la variedad singular junto con las transformaciones de auto-Bäcklund y de Darboux jugarán un papel fundamental en este estudio. Además, también se lleva a cabo un análisis complementario basado en las simetrías de Lie y reducciones de similaridad, que nos permitirán estudiar desde esta nueva perspectiva los problemas espectrales asociados. Partiendo de la archiconocida ecuación de Schrödinger no lineal, se han investigado diferentes generalizaciones integrables con numerosas aplicaciones en diversos campos científicos, como la Física Matemática, Física de Materiales o Biología.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.