We developed a genomic surveillance program for real-time monitoring of SARS-CoV-2 variants of concern in Uruguay. Here, we present the first results, including the proposed qPCR-VOC method, the general workflow and the report of the introduction and community transmission of the VOC P.1 in Uruguay in multiple independent events.
DNase1L3 deficiency is an inborn error of immunity that causes monogenic systemic lupus erythematosus (SLE) in humans. Here, we identified that one third of patients with sporadic SLE have antibodies to DNase1L3. Like DNase1L3 deficiency, we found that patients with anti-DNase1L3 antibodies have features associated with immune pathways activated by immunogenic self-DNA, including elevated antibodies to dsDNA and prominent expression of the interferon and myeloid/neutrophil signatures. Interestingly, 40-80% of anti-DNase1L3 antibodies in SLE serum contain the 9G4 idiotype, which is encoded by the autoreactive heavy-chain gene segment VH4-34. Sequence and functional analysis of four anti-DNase1L3 monoclonal antibodies generated from SLE patients experiencing disease-associated flares showed that these antibodies were derived from self-reactive 9G4+ switched memory B cells. These antibodies are highly enriched in somatic hypermutations, indicating that they originated from antigen-experienced cells, and have neutralizing activity against DNase1L3. Together, the data demonstrate that autoantibodies to DNase1L3 phenocopy pathogenic mechanisms associated with DNase1L3 deficiency. Moreover, the finding that autoreactive B cells bearing the 9G4 idiotype produce dominant serum autoantibodies, including antibodies to DNase1L3, underscores VH4-34+ B cells as sensible therapeutic targets for specific depletion of pathogenic B cells in SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.