Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems.
Freshwater mussels are declining globally, and effective conservation requires prioritizing research and actions to identify and mitigate threats impacting mussel species. Conservation priorities vary widely, ranging from preventing imminent extinction to maintaining abundant populations. Here, we develop a portfolio of priority research topics for freshwater mussel conservation assessment. To address these topics, we group research priorities into two categories: intrinsic or extrinsic factors. Intrinsic factors are indicators of organismal or population status, while extrinsic factors encompass environmental variables and threats. An understanding of intrinsic factors is useful in monitoring, and of extrinsic factors are important to understand ongoing and potential impacts on conservation status. This dual approach can guide conservation status assessments prior to the establishment of priority species and implementation of conservation management actions.
Growth rates of populations of the freshwater pearl mussel, Margaritifera margaritifera (L., 1758), in northwestern Spain were analysed based on measurements of annual annuli and using two nonlinear functions for length-at-age data sets: von Bertalanffy's growth model and a hyperbolic function. These populations reach the smallest maximum shell length (90.5 mm) and have the shortest life-span (35 years) and the highest growth rate (k in von Bertalanffy's model >0.1·year–1, on average) known for this species. The two models were similar in performance and were well fitted (around 99%) to shell-length-at-age data, although the hyperbolic function appears to be applicable only from 6 years of age. The growth rate (either k or k' from the hyperbolic function) showed a large and significant variation across populations, both among and within drainages.
A genetic analysis of freshwater pearl mussel Margaritifera margaritifera populations from NW Spain, a peripheral area of its European distribution, was carried out using microsatellite markers. These populations were formerly reported as genetically differentiated on the basis of growth and longevity studies. Ten loci previously characterized in populations from central Europe were used to comparatively analyze the genetic variability at the southern edge of the species' range. Iberian pearl mussel populations showed very low genetic variability and significant high genetic differentiation. Half of the total genetic diversity observed appeared to be distributed between populations, which suggested a highly structured adaptive potential in pearl mussel at the southern peripheral distribution of the species. Population distinctiveness was evidenced by assignment tests, which revealed a high accuracy of individual assignments to their population of origin. All data suggested low effective population size and major effects of genetic drift on population genetic structure. In order to avoid further loss of genetic variation in biologically distinctive populations from NW Spain, prioritization of genetic resources of this species is required for conservation and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.