Development of coordinated movements was quantitatively assessed in adult opossums (Monodelphis domestica) with thoracic spinal cords transected by (1) crushing 7-8 d after birth [postnatal days 7-8 (P7-P8)]; at 2-3 years of age, systematic behavioral tests (e.g., climbing, footprint analysis, and swimming) showed only minor differences between control (n = 5) and operated (n = 10) animals; and (2) cutting on P4-P6; at 1 month these opossums exhibited coordinated walking movements but were unable to right themselves from a supine position, unlike controls (n = 6). When tested at 2 or 6 months, they could right themselves and showed remarkable coordination, albeit with more differences from controls than after a crush. No animals with spinal cords that were crushed at P14-18 survived because of cannibalism by the mother. Morphological studies (n = 10) 3 months-3 years after crush at 1 week showed restoration of structural continuity and normal appearance at the lesion site. Animals with cut rather than crushed cords showed continuity but greater morphological deficits. That lesions were complete was demonstrated by examining morphology and nerve impulse conduction immediately after crushing or cutting the spinal cord in controls. After lumbar spinal cord injection of 10 kDa dextran amine, retrogradely labeled cells were found rostral to the lesion in hindbrain and midbrain nuclei. Conduction was restored across the site of the lesion. Thus complete spinal cord transection in neonatal Monodelphis was followed by development of coordinated movements and repair of the spinal cord, a process that included development of functional connections by axons that crossed the lesion.
We have developed methods that allow correlation of propulsive reflexes of the intestine with measurements of intraluminal pressure, fluid movement and spatio-temporal maps of intestinal wall movements for the first time in vivo. A segment of jejunum was cannulated and set up in a Trendelenburg recording system while remaining connected to the vascular and nerve supply of the anaesthetized rat. The resting intraluminal pressure in intact intestine was 2-4 mmHg. Hydrostatic pressures of 2, 4, 8 and 16 mmHg were imposed. At a baseline pressure of 4 mmHg, propulsive waves generated pressures of 9 +/- 1 mmHg, that progressed oral to anal at 2-5 mm s(-1). Individual propulsive waves propelled 0.8 +/- 0.4 mL of fluid. The frequency of propulsive waves increased with pressure, but peristaltic efficiency (mL per contraction) decreased with pressure increase between 4 and 16 mmHg. Atropine, as a bolus, transiently blocked peristalsis, but caused maintained block when infused. Hexamethonium blocked propulsive contractions. Inhibition of nitrergic transmission converted regular peristalsis to non-propulsive contractions. These studies demonstrate the utility of an adapted Trendelenburg method for quantitative investigation of motility and pharmacology of enteric reflexes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.