Background: Slow gastrointestinal (GI) transit occurs in moderate-to-severe malnutrition. Mechanisms underlying malnutrition-associated dysmotility remain unknown, partially due to lack of animal models. This study sought to characterize GI dysmotility in mouse models of malnutrition. Methods: Neonatal mice were malnourished by timed maternal separation. Alternatively, low-protein, low-fat diet was administered to dams, with malnourished neonates tested at two weeks or weaned to the same chow and tested as young adults. We determined total GI transit time by carmine red gavage, colonic motility by rectal bead latency, and both gastric emptying and small bowel motility with fluorescein isothiocyanate-conjugated dextran. We assessed histology with light microscopy, ex vivo contractility and permeability with force-transduction and Ussing chamber studies, and gut microbiota composition by 16S rDNA sequencing. Key Results: Both models of neonatal malnutrition and young adult malnourished males but not females exhibited moderate growth faltering, stunting, and grossly abnormal stomachs. Progression of fluorescent dye was impaired in both neonatal models of malnutrition, whereas gastric emptying was delayed only in maternally separated pups and malnourished young adult females. Malnourished young adult males but not females had atrophic GI mucosa, exaggerated intestinal contractile responses, and increased gut barrier permeability. These sex-specific abnormalities were associated with altered gut microbial communities. Conclusions & Inferences: Multiple models of early-life malnutrition exhibit delayed upper GI transit. Malnutrition affects young adult males more profoundly than females. These models will facilitate future studies to identify mechanisms underlying malnutrition-induced pathophysiology and sex-specific regulatory effects.
Purpose of review Biliary atresia (BA) is the leading cause of chronic liver disease and the most common indication for pediatric liver transplantation. The use of ultrasound (US) and related techniques continues to evolve to help diagnose BA as well as potentially to help predict outcomes after treatment with the Kasai portoenterostomy (KP). Recent findings There are no US findings that are definitive for BA; however, signs which are consistent with BA include gallbladder abnormalities, the triangular cord sign, presence of hepatic subcapsular flow, and hilar lymphadenopathy. Elastography techniques to measure liver stiffness may also increase the diagnostic accuracy of detecting BA, particularly in older infants or without other US findings. In addition, both US and elastography are still being studied as potential methods to predict outcomes after KP such as the development of portal hypertension and the need for liver transplant. Summary US findings in the diagnosis of BA are well characterized. Future studies will help determine the utility of elastography in diagnosing BA, as well as both US and elastography in monitoring and predicting disease outcomes after KP.
Complications of cirrhotic portal hypertension (PHTN) in children are broad and include clinical manifestations ranging from variceal hemorrhage, hepatic encephalopathy (HE), ascites, spontaneous bacterial peritonitis (SBP), and hepatorenal syndrome (HRS) to less common conditions such as hepatopulmonary syndrome, portopulmonary hypertension, and cirrhotic cardiomyopathy. The approaches to the diagnosis and management of these complications have become standard of practice in adults with cirrhosis with many guidance statements available. However, there is limited literature on the diagnosis and management of these complications of PHTN in children with much of the current guidance available focused on variceal hemorrhage. The aim of this review is to summarize the current literature in adults who experience these complications of cirrhotic PHTN beyond variceal hemorrhage and present the available literature in children, with a focus on diagnosis, management, and liver transplant decision making in children with cirrhosis who develop ascites, SBP, HRS, HE, and cardiopulmonary complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.