The recent massive reduction in the numbers of fresh Human African Trypanosomiasis (HAT) infection has presented an opportunity for the global elimination of this disease. To prevent a possible resurgence, as was the case after the reduced transmission of the 1960s, surveillance needs to be sustained and the necessary tools for detection and treatment of cases need to be made available at the points of care. In this review, we examine the available resources and make recommendations for improvement to ensure the sustenance of the already achieved gains to keep the trend moving towards elimination.
African trypanosomiasis is a vector-borne neglected tropical disease caused by parasites of the Trypanosoma genus that are cyclically transmitted through the bite of an infected tsetse fly. Two forms of the disease are endemic to sub-Saharan Africa: Human African Trypanosomiasis, also known as sleeping sickness, and Animal African Trypanosomiasis, commonly known as nagana (Aksoy et al., 2014). Nagana, caused by Trypanosoma brucei, Trypanosoma vivax, and Trypanosoma congolense, is considered to be the main disease that limits the trade of livestock in sub-Saharan Africa and kills approximately 3 million cattle annually, with an estimated loss of US
Background
Ghana is endemic for some neglected tropical diseases (NTDs) including schistosomiasis, onchocerciasis and lymphatic filariasis. The major intervention for these diseases is mass drug administration of a few repeatedly recycled drugs which is a cause for major concern due to reduced efficacy of the drugs and the emergence of drug resistance. Evidently, new treatments are needed urgently. Medicinal plants, on the other hand, have a reputable history as important sources of potent therapeutic agents in the treatment of various diseases among African populations, Ghana inclusively, and provide very useful starting points for the discovery of much-needed new or alternative drugs.
Methodology/Principal findings
In this study, extracts of fifteen traditional medicines used for treating various NTDs in local communities were screened in vitro for efficacy against schistosomiasis, onchocerciasis and African trypanosomiasis. Two extracts, NTD-B4-DCM and NTD-B7-DCM, prepared from traditional medicines used to treat schistosomiasis, displayed the highest activity (IC50 = 30.5 μg/mL and 30.8 μg/mL, respectively) against Schistosoma mansoni adult worms. NTD-B2-DCM, also obtained from an antischistosomal remedy, was the most active against female and male adult Onchocera ochengi worms (IC50 = 76.2 μg/mL and 76.7 μg/mL, respectively). Antitrypanosomal assay of the extracts against Trypanosoma brucei brucei gave the most promising results (IC50 = 5.63 μg/mL to 18.71 μg/mL). Incidentally, NTD-B4-DCM and NTD-B2-DCM, also exhibited the greatest antitrypanosomal activities (IC50 = 5.63 μg/mL and 7.12 μg/mL, respectively). Following the favourable outcome of the antitrypanosomal screening, this assay was selected for bioactivity-guided fractionation. NTD-B4-DCM, the most active extract, was fractionated and subsequent isolation of bioactive constituents led to an eupatoriochromene-rich oil (42.6%) which was 1.3-fold (IC50 <0.0977 μg/mL) more active than the standard antitrypanosomal drug, diminazene aceturate (IC50 = 0.13 μg/mL).
Conclusion/Significance
These findings justify the use of traditional medicines and demonstrate their prospects towards NTDs drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.