The properties of artificially grown thin films are strongly affected by surface processes during growth. Coherent X-rays provide an approach to better understand such processes and fluctuations far from equilibrium. Here we report results for vacuum deposition of C
60
on a graphene-coated surface investigated with X-ray Photon Correlation Spectroscopy in surface-sensitive conditions. Step-flow is observed through measurement of the step-edge velocity in the late stages of growth after crystalline mounds have formed. We show that the step-edge velocity is coupled to the terrace length, and that there is a variation in the velocity from larger step spacing at the center of crystalline mounds to closely-spaced, more slowly propagating steps at their edges. The results extend theories of surface growth, since the behavior is consistent with surface evolution driven by processes that include surface diffusion, the motion of step-edges, and attachment at step edges with significant step-edge barriers.
Broad-beam low-energy ion bombardment can lead to the spontaneous formation of nanoscale surface structures, but the dominant mechanisms driving evolution remain controversial. Using coherent x-ray scattering to examine the classic case of ion beam rippling of SiO2 surfaces, we study the relationship between the average kinetics of ripple formation and the underlying fluctuation dynamics. The early stage growth of fluctuations is well fit with a linear theory formalism employing a viscous relaxation term with full wavenumber dependence. In this regime, the x-ray photon correlation spectroscopy (XPCS) two-time correlation function shows novel behavior, with memory stretching back to the beginning of the bombardment. For a given length scale, correlation times do not grow significantly beyond the characteristic time associated with the early-stage ripple growth. In the late stages of patterning, when the average surface structure on a given length scale is no longer evolving, dynamical processes continue on the surface. Nonlinear processes dominate at long length-scales, leading to compressed exponential decay of the speckle correlation functions, while at short length-scales the dynamics appears to approach a linear behavior consistent with viscous flow relaxation. This behavior is found to be consistent with simulations of the anisotropic Kuramoto-Sivashinsky equation. In addition, it is shown that the surface ripple velocity, an important parameter of the ion-driven surface evolution, can be measured with coherent x-ray scattering in conjunction with use of an inhomogeneous ion beam. The change in viewpoint exemplified by this study, from a focus on only average surface kinetics to one incorporating the underlying nanoscale dynamics, is rapidly becoming more widely applicable as new and upgraded x-ray sources with higher coherent flux come online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.