Abstract:The European Space Agency Sentinel-2 satellites provide multispectral images with pixel sizes down to 10 m. This high resolution allows for fast and frequent detection, classification and discrimination of various objects in the sea, which is relevant in general and specifically for the vast Arctic environment. We analyze several sets of multispectral image data from Denmark and Greenland fall and winter, and describe a supervised search and classification algorithm based on physical parameters that successfully finds and classifies all objects in the sea with reflectance above a threshold. It discriminates between objects like ships, islands, wakes, and icebergs, ice floes, and clouds with accuracy better than 90%. Pan-sharpening the infrared bands leads to classification and discrimination of ice floes and clouds better than 95%. For complex images with abundant ice floes or clouds, however, the false alarm rate dominates for small non-sailing boats.
Maritime activity is expected to increase, and therefore also the need for maritime surveillance and safety. Most ships are obligated to identify themselves with a transponder system like the Automatic Identification System (AIS) and ships that do not, intentionally or unintentionally, are referred to as dark ships and must be observed by other means. Knowing the future location of ships can not only help with ship/ship collision avoidance, but also with determining the identity of these dark ships found in, e.g., satellite images. However, predicting the future location of ships is inherently probabilistic and the variety of possible routes is almost limitless. We therefore introduce a Bidirectional Long-Short-Term-Memory Mixture Density Network (BLSTM-MDN) deep learning model capable of characterising the underlying distribution of ship trajectories. It is consequently possible to predict a probabilistic future location as opposed to a deterministic location. AIS data from 3631 different cargo ships are acquired from a region west of Norway spanning 320,000 sqkm. Our implemented BLSTM-MDN model characterizes the conditional probability of the target, conditioned on an input trajectory using an 11-dimensional Gaussian distribution and by inferring a single target from the distribution, we can predict several probable trajectories from the same input trajectory with a test Negative Log Likelihood loss of −9.96 corresponding to a mean distance error of 2.53 km 50 min into the future. We compare our model to both a standard BLSTM and a state-of-the-art multi-headed self-attention BLSTM model and the BLSTM-MDN performs similarly to the two deterministic deep learning models on straight trajectories, but produced better results in complex scenarios.
Maritime surveillance of the Arctic region is of growing importance as shipping, fishing and tourism are increasing due to the sea ice retreat caused by global warming. Ships that do not identify themselves with a transponder system, so-called dark ships, pose a security risk. They can be detected by SAR satellites, which can monitor the vast Arctic region through clouds, day and night, with the caveat that the abundant icebergs in the Arctic cause false alarms. We collect and analyze 200 Sentinel-1 horizontally polarized SAR scenes from areas with high maritime traffic and from the Arctic region with a high density of icebergs. Ships and icebergs are detected using a continuous wavelet transform, which is optimized by correlating ships to known AIS positions. Globally, we are able to assign 72% of the AIS signals to a SAR ship and 32% of the SAR ships to an AIS signal. The ships are used to construct an annotated dataset of more than 9000 ships and ten times as many icebergs. The dataset is used for training several convolutional neural networks, and we propose a new network which achieves state of the art performance compared to previous ship–iceberg discrimination networks, reaching 93% validation accuracy. Furthermore, we collect a smaller test dataset consisting of 424 ships from 100 Arctic scenes which are correlated to AIS positions. This dataset constitutes an operational Arctic test scenario. We find these ships harder to classify with a lower test accuracy of 83%, because some of the ships sail near icebergs and ice floes, which confuses the classification algorithms.
Detection of aircrafts in satellite images is a challenging problem when the background is strongly reflective clouds with varying transparency. We develop a fast and effective detection algorithm that can find almost all aircrafts above and between clouds in Sentinel-2 multispectral images. It exploits the time delay of a few seconds between the recorded multispectral images such that a moving aircraft is observed at different positions due to parallax effects. The aircraft speed, heading and altitude are also calculated accurately. Analysing images over the English Channel during fall 2020, we obtain a detection accuracy of 80%, where the most of the remaining were covered by clouds. We also analyse images in the 1.38 μm water absorption band, where only 61% of the aircrafts are detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.