This paper aims to provide a comprehensive review of the current state of drone technology and its applications in the mining industry. The mining industry has shown increased interest in the use of drones for routine operations. These applications include 3D mapping of the mine environment, ore control, rock discontinuities mapping, postblast rock fragmentation measurements, and tailing stability monitoring, to name a few. The article offers a review of drone types, specifications, and applications of commercially available drones for mining applications. Finally, the research needs for the design and implementation of drones for underground mining applications are discussed.
BackgroundA detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a “universal index,” which has led to the proliferation of many proposed heat stress indices.MethodsThe aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model.ResultsThe performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers.ConclusionThis method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.
In the late 1990s, despite years of efforts to understand and reduce coal worker’s pneumoconiosis (CWP) prevalence from more than 30% in 1970 to less than 4.2%, the level of occurrence among the US coal miners increased unexpectedly. The recent resurgence of lung diseases has raised concerns in the scientific and regulatory communities. In 2014, the United States Mine Safety and Health Administration (MSHA) issued a new dust rule changing the respirable coal mine dust (RCMD) exposure limits, measurement technology, and sampling protocol. The analysis for probable causes for the substantial increase in the CWP incidence rate is rather complicated. This paper aims to conduct a review of RCMD respiratory deposition, health effects, monitoring, regulations, and particle characteristics. The primary sources of RCMD along with the health risks from potential exposure are highlighted, and the current RCMD exposure regulations of the major coal producer countries are compared. A summary of RCMD characterization studies from 1972 to the present is provided. A review of the literature revealed that numerous factors, including geological and mining parameters, advancements in mining practices, particle characteristics, and monitoring approaches are considered to contribute to the recent resurgence of RCMD lung diseases. However, the root causes of the problem are still unknown. The effectiveness of the new dust rules in the United States will probably take years to be correctly assessed. Therefore, future research is needed to understand the relationship between RCMD particle characteristics and lung deposition, and the efficacy of current monitoring practices to measure the true dose of RCMD exposure.
BackgroundWork comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings.MethodsThis paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a “comfort model” which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines.ResultsSimulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted.ConclusionThe analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.