Neutrino oscillations involving eV-scale neutrino mass states are investigated in the context of global neutrino oscillation data including short and long-baseline accelerator, reactor, and radioactive source experiments, as well as atmospheric and solar neutrinos. We consider sterile neutrino mass schemes involving one or two mass-squared differences at the eV 2 scale denoted by 3+1, 3+2, and 1+3+1. We discuss the hints for eV-scale neutrinos from ( -) ν e disappearance (reactor and Gallium anomalies) and ( -) ν µ → ( -) ν e appearance (LSND and MiniBooNE) searches, and we present constraints on sterile neutrino mixing from ( -) ν µ and neutral-current disappearance data. An explanation of all hints in terms of oscillations suffers from severe tension between appearance and disappearance data. The best compatibility is obtained in the 1+3+1 scheme with a p-value of 0.2% and exceedingly worse compatibilities in the 3+1 and 3+2 schemes.
We discuss the possibility to explain the anomalies in short-baseline neutrino oscillation experiments in terms of sterile neutrinos. We work in a 3 + 1 framework and pay special attention to recent new data from reactor experiments, IceCube and MINOS+. We find that results from the DANSS and NEOS reactor experiments support the sterile neutrino explanation of the reactor anomaly, based on an analysis that relies solely on the relative comparison of measured reactor spectra. Global data from the ν e disappearance channel favour sterile neutrino oscillations at the 3σ level with ∆m 2 41 ≈ 1.3 eV 2 and |U e4 | ≈ 0.1, even without any assumptions on predicted reactor fluxes. In contrast, the anomalies in the ν e appearance channel (dominated by LSND) are in strong tension with improved bounds on ν µ disappearance, mostly driven by MINOS+ and IceCube. Under the sterile neutrino oscillation hypothesis, the p-value for those data sets being consistent is less than 2.6 × 10 −6 . Therefore, an explanation of the LSND anomaly in terms of sterile neutrino oscillations in the 3 + 1 scenario is excluded at the 4.7σ level. This result is robust with respect to variations in the analysis and used data, in particular it depends neither on the theoretically predicted reactor neutrino fluxes, nor on constraints from any single experiment. Irrespective of the anomalies, we provide updated constraints on the allowed mixing strengths |U α4 | (α = e, µ, τ ) of active neutrinos with a fourth neutrino mass state in the eV range. a modentle@uni-mainz.de
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.