This paper proposes a new approach to writing and verifying divide-and-conquer programs in Coq. Extending the rich line of previous work on algebraic approaches to recursion schemes, we present an algebraic approach to divide-and-conquer recursion: recursions are represented as a form of algebra, and from outer recursions, one may initiate inner recursions that can construct data upon which the outer recursions may legally recurse. Termination is enforced entirely by the typing discipline of our recursion schemes. Despite this, our approach requires little from the underlying type system, and can be implemented in System F ω plus a limited form of positive-recursive types. Our implementation of the method in Coq does not rely on structural recursion or on dependent types. The method is demonstrated on several examples, including mergesort, quicksort, Harper’s regular-expression matcher, and others. An indexed version is also derived, implementing a form of divide-and-conquer induction that can be used to reason about functions defined via our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.