This prospective and controlled pilot study evaluates the long-term effects of nocturnal oxygen therapy (NOT) on exercise endurance, hematology variables, quality of life, and survival of 23 adult patients (mean age, 32 +/- 6 yr) with post-tricuspid congenital heart defects (ventricular septal defect = 10; patent ductus arteriosus = 13) and Eisenmenger Syndrome. All had pulmonary hypertension (mean pulmonary artery pressure = 88 +/- 20 mm Hg), severe hypoxemia (Pa(O(2)) = 44 +/- 5 mm Hg), and secondary erythrocytosis (hematocrit = 61.5 +/- 7%). Exercise endurance (6-min walk test = 380 +/- 88 m) was limited. In a random fashion, NOT was given to one group of patients (n = 12) but withheld from a comparable control group (n = 11). At 2 yr of close follow-up, two patients in the group of control patients, and three in the treatment group died. Mean survival estimates were similar in both groups (20.7 versus 20.8 mo; chi-square log-rank, 0.08; p = NS). Likewise, none of the hematology, exercise capacity, and quality of life variables examined showed statistically significant changes that were dependent on treatment regimen. We conclude that NOT does not modify the natural history of patients with advanced Eisenmenger Syndrome.
Preliminary studies on sleep of patients with congenital heart disease and Eisenmenger's syndrome (ES) at our institution demonstrated nocturnal worsening arterial unsaturation, which appeared to be a body position-related phenomenon. To investigate the potential effect of body position on gas exchange in ES, we carried out a prospective study of 28 patients (mean age, 34.8 +/- 11.7 yr) with established ES due to congenital heart disease. In every patient, arterial blood gases were performed during both sitting and supine positions under three different conditions: room air, while breathing 100% oxygen, and after breathing oxygen at a flow rate of 3 L/min through nasal prongs. Alveolar oxygen pressure (PaO2) for the calculation of alveolar-arterial oxygen tension differences (AaPO2) was derived from the alveolar gas equation using PaCO2 and assuming R = 1. We used paired t test, repeated-measures two-way ANOVA with Bonferroni's test, and regression analysis. From sitting to supine position on room air, there was a significant decrease in PaO2 (from 52.5 +/- 7.5 to 47.5 +/- 5.5 mm Hg; p < 0. 001) and SaO2 (from 86.7 +/- 4.6 to 83.3 +/- 4.9%; p < 0.001), both of which were corrected by nasal O2 (to 68.2 +/- 21 mm Hg and to 92 +/- 4%, respectively, p < 0.005). PaCO2 and pH remained unchanged. The magnitude of the change in PaO2 correlated with the change in AaPO2 on room air (r = 0.77; p < 0.01) but not with the change in AaPO2 on 100% oxygen. It is concluded that in adult patients with ES there is a significant decrease in PaO2 and SaO2 when they change from the sitting to the supine position. A ventilation-perfusion (V/Q) distribution abnormality and/or a diffusion limitation phenomenon rather than an increase in true shunt may be the mechanisms responsible for this finding. The response to nasal O 2 we observed warrants a trial with long-term nocturnal oxygen therapy in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.