The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.
In this study, a hydrodynamic model was applied to the Nazaré submarine canyon with boundary forcing provided by an operational forecast model for the west Iberian coast for the spring of 2009. After validation, a lagrangian transport model was coupled to the hydrodynamic model to study and compare the transport patterns of three different classes of organo-mineral aggregates along the Nazaré canyon. The results show that the transport in the canyon is neither constant, nor unidirectional and that there are preferential areas where deposited matter is resuspended and redistributed. The transport of the larger class size of organo-mineral aggregates (2000 μm and 4000 μm) is less pronounced, and a decrease in the phytodetrital carbon flux along the canyon is observed. During the modelled period, the Nazaré canyon acts as a depocentre of sedimentary organic matter rather than a conduit of organo-mineral aggregates to the deep sea, as has been reported by other authors. The results of this study are crucial for the understanding of the oceanic carbon sequestration at the continental margin, and therefore important for evaluating the role of submarine canyons within the global carbon cycle
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.