Nowadays wireless sensor netwoks (WSN) technology, wireless communications and digital electronics have made it realistic to produce a large scale miniaturized devices integrating sensing, processing and communication capabilities. The focus of this paper is to present an innovative mobile platform for heterogeneous sensor networks, combined with adaptive methods to optimize the communication architecture for novel potential applications in multimedia and entertainment. In fact, in the near future, some of the applications foreseen for WSNs will employ multi-platform systems with a high number of different devices, which may be completely different in nature, size, computational and energy capabilities, etc. Nowadays, in addition, data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. The goal of this procedure is to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based sensing with WSN augmentation and real-time processing for immersive media experiences.
Wireless sensor netwoks (WSN) employ miniaturized devices which integrate sensing, processing, and communication capabilities. In this paper an innovative mobile platform for heterogeneous sensor networks is presented, combined with adaptive methods to optimize the communication architecture for novel potential applications even in coastal and marine environment monitoring. In fact, in the near future, WSN data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. This procedure is here applied to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based remote sensing of the ocean, sea ice, coastal waters, and large water regions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.