IMPORTANCE Metformin hydrochloride is emerging as a repurposed anticancer drug. Preclinical and retrospective studies have shown that it improves outcomes across a wide variety of neoplasms, including lung cancer. Particularly, evidence is accumulating regarding the synergistic association between metformin and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs). OBJECTIVE To assess the progression-free survival (PFS) in patients with advanced lung adenocarcinoma who received treatment with EGFR-TKIs plus metformin compared with those who received EGFR-TKIs alone. DESIGN, SETTING, AND PARTICIPANTS Open-label, randomized, phase 2 trial conducted at the Instituto Nacional de Cancerología (INCan), Mexico City, Mexico. Eligible patients were 18 years or older, had histologically confirmed stage IIIB-IV lung adenocarcinoma with an activating EGFR mutation. INTERVENTIONS Patients were randomly allocated to receive EGFR-TKIs (erlotinib hydrochloride, afatinib dimaleate, or gefitinib at standard dosage) plus metformin hydrochloride (500 mg twice a day) or EGFR-TKIs alone. Treatment was continued until occurrence of intolerable toxic effects or withdrawal of consent. MAIN OUTCOMES AND MEASURES The primary outcome was PFS in the intent-to-treat population. Secondary outcomes included objective response rate, disease control rate, overall survival (OS), and safety.
Objective CD47 is an antiphagocytic molecule that contributes to tumor cell resistance in host immune surveillance. CD47 overexpression correlated with tumor progression and shorter survival in lung cancer. However, the expression and functional significance of CD47 in Non‐Small Cell Lung Cancer (NSCLC) has not been completely understood. Materials and Methods In this retrospective study, CD47 expression was immunohistochemically examined in tumor biopsies from 169 NSCLC patients. The association of CD47 levels (H‐score) with clinicopathological characteristics and survival outcomes was evaluated. Results CD47 protein was detected in 84% of patients with a median expression of 80% (0‐100). Tumor CD47 levels above 1% and 50% were found in 84% and 65.7% of patients, respectively. While, median CD47 staining index was 160 (0‐300). Patients were divided into two groups according to CD47 expression (high or low), using a cutoff value of 150. High CD47 expression was associated with wood smoke exposure (71.1% vs 28.9%, P = .013) and presence of EGFR (+) mutations (66.7% vs 33.3%, P = .04). Survival analysis carried out in the whole population did not show any association of CD47 expression and survival outcome. However, in patients with EGFR (+) mutations, CD47 expression was associated with higher progression‐free survival (PFS) (12.2 vs. 4.4 months, P = .032). When the survival analysis was performed according to CD47 levels (cut off value: 150), both, PFS and overall survival (OS) were shortened in patients with a high expression of CD47 (10.7 vs. NR, P = .156) and (29.2 vs. NR months P = .023), respectively. Conclusions CD47 overexpression is not a prognostic factor for PFS and OS in NSCLC patients. However, the presence of EGFR mutations and high expression of CD47 were associated with shortened PFS and OS. Coexpression of these markers represents a potential biomarker and characterizes a therapeutic niche for lung cancer.
Inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Chronic inflammation plays a critical role in tumorigenesis. Tumor infiltrating inflammatory cells mediate processes associated with progression, immune suppression, promotion of neoangiogenesis and lymphangiogenesis, remodeling of extracellular matrix, invasion and metastasis, and, lastly, the inhibition of vaccine-induced antitumor T cell response. Accumulating evidence indicates a critical role of myeloid cells in the pathophysiology of human cancers. In contrast to the well-characterized tumor-associated macrophages (TAMs), the significance of granulocytes in cancer has only recently begun to emerge with the characterization of tumor-associated neutrophils (TANs). Recent studies show the importance of CD47 in the interaction with macrophages inhibiting phagocytosis and promoting the migration of neutrophils, increasing inflammation which can lead to recurrence and progression in lung cancer. Currently, therapies are targeted towards blocking CD47 and enhancing macrophage-mediated phagocytosis. However, antibody-based therapies may have adverse effects that limit its use.
Metformin has been under basic and clinical study as an oncological repurposing pharmacological agent for several years, stemming from observational studies which consistently evidenced that subjects who were treated with metformin had a reduced risk for development of cancer throughout their lives, as well as improved survival outcomes when diagnosed with neoplastic diseases. As a result, several basic science studies have attempted to dissect the relationship between metformin’s metabolic mechanism of action and antineoplastic cellular signaling pathways. Evidence in this regard was compelling enough that a myriad of randomized clinical trials was planned and conducted in order to establish the effect of metformin treatment for patients with diverse neoplasms, including lung cancer. As with most novel antineoplastic agents, early results from these studies have been mostly discouraging, though a recent analysis that incorporated body mass index may provide significant information regarding which patient subgroups might derive the most benefit from the addition of metformin to their anticancer treatment. Much in line with the current pipeline for anticancer agents, it appears that the benefit of metformin may be circumscribed to a specific patient subgroup. If so, addition of metformin to antineoplastic agents could prove one of the most cost-effective interventions proposed in the context of precision oncology. Currently published reviews mostly rely on a widely questioned mechanism of action by metformin, which fails to consider the differential effects of the drug in lean vs. obese subjects. In this review, we analyze the pre-clinical and clinical information available to date regarding the use of metformin in various subtypes of lung cancer and, further, we present evidence as to the differential metabolic effects of metformin in lean and obese subjects where, paradoxically, the obese subjects have reported more benefit with the addition of metformin treatment. The novel mechanisms of action described for this biguanide may explain the different results observed in clinical trials published in the last decade. Lastly, we present novel hypothesis regarding potential biomarkers to identify who might reap benefit from this intervention, including the role of prolyl hydroxylase domain 3 (PHD3) expression to modify metabolic phenotypes in malignant diseases.
BackgroundWood smoke exposure (WSE) has been associated with an increased risk of lung cancer development. WSE has been related with high frequency of EGFR mutations and low frequency of KRAS mutations. The aim of this study was to evaluate large scale genomic alterations in lung adenocarcinomas associated with WSE using targeted next generation sequencing.MethodsDNA multi-targeted sequencing was performed in 42 fresh-frozen samples of advanced lung adenocarcinomas. The TruSeQ Cancer Panel (Illumina) was used for genomic library construction and sequencing assays.ResultsWSE rate was higher in women (p=0.037) and non-smokers (p=0.001). WSE correlated with mutations in the genes SMARCB1 (p=0.002), Ataxia telangiectasia mutated (p=0.004), Kinase Insert Domain Receptor (p=0.006), and were borderline significant in RET and EGFR exon. Genomic alterations significantly co-occurred in the tumor suppressor gene ATM with the following genes: SMARCB1, EGFR exon 7, RET and KDR. Clinical factors associated with poor prognosis were ECOG ≥ 2 (p= 0.014), mutations in KDR (p= 0.004) and APC genes (p < 0.001).ConclusionsLung adenocarcinoma patients with WSE showed a distinctive mutated profile for the SMARCB1, ATM, EGFR exon 7, RET and KDR genes. ECOG status and KDR gene mutations were significantly associated with poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.