Homomorphic secret sharing (HSS) is a form of secret sharing that supports the local evaluation of functions on the shares, with applications to multi-server private information retrieval, secure computation, and more.Insisting on additive reconstruction, all known instantiations of HSS from "Learning with Error (LWE)"-type assumptions either have to rely on LWE with superpolynomial modulus, come with non-negligible error probability, and/or have to perform expensive ciphertext multiplications, resulting in bad concrete efficiency.In this work, we present a new 2-party local share conversion procedure, which allows to locally convert noise encoded shares to non-noise plaintext shares such that the parties can detect whenever a (potential) error occurs and in that case resort to an alternative conversion procedure.Building on this technique, we present the first HSS for branching programs from (Ring-)LWE with polynomial input share size which can make use of the efficient multiplication procedure of Boyle et al. (Eurocrypt 2019) and has no correctness error. Our construction comes at the cost of a -on expectation -slightly increased output share size (which is insignificant compared to the input share size) and a more involved reconstruction procedure.More concretely, we show that in the setting of 2-server private information retrieval we can choose ciphertext sizes of only a quarter of the size of the scheme of Boyle et al. at essentially no extra cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.