Asphalt road pavements are usually dark and, consequently, have a low albedo. Therefore, they absorb energy as heat, increasing the Urban Heat Island (UHI) effect, which impacts the environment, energy consumption, and human health. Through the functionalization with thermochromic materials (TM), this work aims to develop a smart asphalt pavement able to change its surface color, increasing the reflectance, and thus mitigate this phenomenon. To achieve this goal, asphalt substrates were functionalized by a surface spray coating of a thermochromic solution (TS) containing aqueous solution of thermochromic microcapsules (thermocapsules), dye, and epoxy resin. To evaluate the functionalization features, Fourier Transform Infrared Spectroscopy (FTIR), and Thermal Differential test (TDT) with cyclic temperature variation were performed in the functionalized asphalt binder. Moreover, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectrometry (EDS), a Quick Ultraviolet Accelerated Weathering Test (QUV) with Colorimetry test, and an adaptation of the Accelerated Polishing Test (APT) were performed on the functionalized asphalt mixture. The results indicate that the functionalization of asphalt substrates with TS exhibits a reversible color-change ability, higher luminosity values when subjected to temperatures above 30 °C, and wear resistance.
Thermochromic materials change their optical response to temperature reversibly. This study explores the application of thermochromism to road engineering, which is still incipient in this area, from two perspectives. The first one is about the development of functionalized road markings (FRM) working as thermochromic sensors to alert the presence of ice on the road and, in this way, to improve road safety. The second one concerns the functionalization of asphalt pavements for reversible color change at high temperatures to reduce energy absorption in the form of heat and, in this way, mitigate Urban Heat Islands (UHI) effect. For the development of the FRM, thermocapsules were added into acrylic ink, applied to an AC10 asphalt mixture, submitted to high and low temperatures, and visually characterized. For the functionalization aiming for UHI reduction, thermochromic solutions (TS) containing thermocapsules, dye, and resin were superficially sprayed at an AC10, and the Quick Ultraviolet Accelerated Weathering Test (QUV) was performed with subsequent Colorimetry Analysis, where the color coordinates defined by the Comissione Internationale de l' Éclairage (CIE) were measured. The results show that it is possible to functionalize road marks to work as a thermochromic sensor. Also, this property can be improved by synthesizing or using thermocapsules with TT closer to the water melting point. The results also indicate that the asphalt pavement functionalization with surface spraying of TS points out to higher luminosity results in terms of color coordinate, which is intended for the mitigation of heat energy absorption, consequently mitigating the UHI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.