Ophiolites of different Paleozoic ages occur in North-West (NW) Iberia in a rootless suture representing the remnants of the Rheic Ocean, Associated allochthonous terranes in the hanging-and foot-walls of the suture derive from the former margins.whereas the relative autochthon corresponds to the Paleozoic passive margin of northern Gondwana, The Paleozoic tectonic evolution of this part of the circum-Atlantic region is deduced from the stratigraphical. petrological. structural and metamorphic evolution of the different units and their ages. The tectonic reconstruction covers from Cambro-Ordovician continental rifting and the opening of the Rheic Ocean to its Middle to Upper Devonian closure. Then, the Variscan Laurussia-Gondwana convergence and collision is briefly described, from its onset to the late stages of collapse associated with the demise of the orogenic roots. ResumeUne suture sans racines et la perte des racines d'une cha'ine montagneuse : la cha'ine varisque du Nord-Ouest de I'Iberie. Des ophiolites d'ages differents affieurent dans le Nord-Ouest de l'Iberie dans une suture sans racines. temoin de l'ocean * Corresponding author.E-mail address: jrmc @usal.es (J.R. Martfnez Catahin).RhMque. Les terrains allochtones sur et sous la suture derivent de ses deux rnarges, tandis que I' autochtone relatif appartient a la marge passive du Nord de Gondwana. On peut deduire l'evolution des plaques dans cetle partie de la region circum-Atlantique it partir des dounees stratigraphiques, petrologiques, structurales, metarnorphiques et geochronologiques. Celte evolution inc1ut le developpernent d'un rift continental et l'ouverture de l'ocean Rhe'ique pendant le Carnbro-Ordovicien ainsi que sa ferrneture au Devonien rnoyen a superieur. On decrit aussi I' evolution de la convergence et collision varisque entre Laurussia et Gondwana, du debut jusqu'aux demiers stades d'un effondrernent associe a la perte des racines orogeniques.Keywords: Oceanic suture; Rheic Ocean; Variscan evolution; N\V IberiaMots des : Suture oceanique ; Ocean Rhelque ; Evolution varisque ; Nord-Ouest de l'Iberie IntrodnctionThe North-West (NW) of the Iberian Massif is located at the hinge zone of the Ibero-Armorican Arc ( Fig. 1) and preserves relicts of oceanic domains that once separated the Paleozoic continents [50,51]. A suture occurring in the hanging-wall of a large thrust system is rootless, which makes its interpretation difficult. However, the excellent exposure of the ophiolitic and associated allochthonous terranes permits the establishment of a sequence of emplacement, crosscutting relationships, and metamorphic gradients.In the absence of continental-scale strike-slip shear zones and faults, the Galician-northeru Portugal section is retrodeformable, permitting qualitative palinspastic reconstructions of the Gondwana-Laurussia conver gence. These characteristics make of NW Iberia a key site to uuravel the history of the Paleozoic plate evolution of the circum-Atlantic region, and specially that of the Rheic Ocean. This contrib...
A correlation between allochthonous units exposed in the NW Iberian Massif and the southern Armorican Massif is carried out based on lithological associations, structural position, age and geochemistry of protoliths and tectonometamorphic evolution. The units on both sides of the Bay of Biscay are grouped into Upper, Middle and Lower allochthons, whereas an underlying allochthonous thrust sheet identified in both massifs is referred to as the Parautochthon. The Lower Allochthon represents a fragment of the outermost edge of Gondwana that underwent continental subduction shortly after the closure of a Palaeozoic ocean which, in turn, is represented by the Middle Allochthon. The latter consists of supra-subduction ophiolites and metasedimentary sequences alternating with basic, mid-ocean ridge basalt (MORB)-type volcanics, with inheritances suggesting the proximity of a continental domain. Seafloor spreading began at the Cambro-Ordovician boundary and oceanic crust was still formed during the Late Devonian, covering the lifetime of the Rheic Ocean, which is possibly represented by the Middle Allochthon. The opening of the oceanic domain was related to pulling apart the peri-Gondwanan continental magmatic arc, which is represented by the Upper Allochthon.
New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confi rm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better defi ne the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207 Pb/ 206 Pb ages between ca. 2430 and 2580 Ma (a best-fi t mean 207 Pb/ 206 Pb age of 2531 ± 19 Ma; 95% confi dence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207 Pb/ 206 Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events.All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (<0.015), oscillatory zoned, mostly euhedral, Late Cretaceous zircon. The younger zircon yielded essentially concordant 206 Pb/ 238 U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206 Pb/ 238 U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the CarlinTrend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave province and Neoproterozoic and Paleozoic metasedimentary sequences dominated by detritus derived from Late Archean sources rather than Proterozoic sources, as is evident farther to the south in the Ruby Mountains. Geosphere, December 2008 Lamoille Canyon; approx. area Y B Angel Lake area (Fig. 2) km Qs LITHOLOGIC UNITS Surficial deposits (Quaternary) Jasperoid breccia (Tertiary) Rhyolitic rocks (Miocene) -ca. 15 Ma Sedimentary rocks (Miocene) Basaltic andesite and associated sedimentary rocks (Eocene) Granitic rocks (Oligocene) Ruby Mountains -East Humboldt Range -Wood Hills igneous and metamorphic complex Nonmetamorphosed to low-grade sedimentary rocks (Triassic and Paleozoic) SYMBOLS Contact Normal fault-ball-bar symbol on downthrown side, dotted where inferred or concealed Low-angle normal fault (detachment fault)-dotted where inferred or concealed Reverse fault-sawteeth on upthrown side Fault (non-specific)-dotted where ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.