Photonic front-coatings with self-cleaning properties are presented as means to enhance the efficiency and outdoor performance of thin-film solar cells, via optical enhancement while simultaneously minimizing soiling-related losses. This was achieved by structuring parylene-C transparent encapsulants using a low-cost and highly-scalable colloidal-lithography methodology. As a result, superhydrophobic surfaces with broadband light-trapping properties were developed. The optimized parylene coatings show remarkably high water contact angles of up to 165.6° and extremely low adhesion, allowing effective surface self-cleaning.The controlled nano/micro-structuring of the surface features also generates strong anti-reflection and light scattering effects, corroborated by numeric electromagnetic modeling, which lead to pronounced photocurrent enhancement along the UV-Visible-Infrared range. The impact of these photonic-structured encapsulants is demonstrated on nanocrystalline silicon solar cells, that show short-circuit current density gains of up to 23.6%, relative to planar reference cells. Furthermore, the improvement of the devices' angular response enables an enhancement of up to 35.2% in the average daily power generation.
The pursuit of ever-more efficient, reliable, and affordable solar cells has pushed the development of nano/micro-technological solutions capable of boosting photovoltaic (PV) performance without significantly increasing costs. One of the most relevant solutions is based on light management via photonic wavelength-sized structures, as these enable pronounced efficiency improvements by reducing reflection and by trapping the light inside the devices. Furthermore, optimized microstructured coatings allow self-cleaning functionality via effective water repulsion, which reduces the accumulation of dust and particles that cause shading. Nevertheless, when it comes to market deployment, nano/micro-patterning strategies can only find application in the PV industry if their integration does not require high additional costs or delays in high-throughput solar cell manufacturing. As such, colloidal lithography (CL) is considered the preferential structuring method for PV, as it is an inexpensive and highly scalable soft-patterning technique allowing nanoscopic precision over indefinitely large areas. Tuning specific parameters, such as the size of colloids, shape, monodispersity, and final arrangement, CL enables the production of various templates/masks for different purposes and applications. This review intends to compile several recent high-profile works on this subject and how they can influence the future of solar electricity.
Microstructured transparent conductive oxides (TCOs) have shown great potential as photonic electrodes in photovoltaic (PV) applications, providing both optical and electrical improvements in the solar cells’ performance due to: (1) strong light trapping effects that enhance broadband light absorption in PV material and (2) the reduced sheet resistance of the front illuminated contact. This work developed a method for the fabrication and optimization of wavelength-sized indium zinc oxide (IZO) microstructures, which were soft-patterned on flexible indium tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) substrates via a simple, low-cost, versatile, and highly scalable colloidal lithography process. Using this method, the ITO-coated PET substrates patterned with IZO micro-meshes provided improved transparent electrodes endowed with strong light interaction effects—namely, a pronounced light scattering performance (diffuse transmittance up to ~50%). In addition, the photonic-structured IZO mesh allowed a higher volume of TCO material in the electrode while maintaining the desired transparency, which led to a sheet resistance reduction (by ~30%), thereby providing further electrical benefits due to the improvement of the contact conductance. The results reported herein pave the way for a new class of photonic transparent electrodes endowed with mechanical flexibility that offer strong potential not only as advanced front contacts for thin-film bendable solar cells but also for a much broader range of optoelectronic applications.
and co-workers, unprecedented multifunctional front-coatings are presented which allow both lightmanagement and self-cleaning properties to enhance the efficiency and outdoor performance of thin-film solar cells, via photonic enhancement while simultaneously minimizing soiling-related losses. This is achieved by structuring parylene-C transparent encapsulants using a low-cost and highly-scalable colloidal-lithography methodology. As a result, superhydrophobic surfaces with broadband light-trapping properties are developed.
The inexorable increase of energy demand and the efficiency bottleneck of monocrystalline silicon solar cell technology is promoting the research and development of alternative photovoltaic materials. Copper-arsenic-sulfide (CAS) compounds are still rather unexplored in the literature, yet they have been regarded as promising candidates for use as p-type absorber in solar cells, owing to their broad raw material availability, suitable bandgap and high absorption coefficient. Here, a comprehensive study is presented on the structural and optoelectronic properties of CAS thin-films deposited via radio-frequency magnetron co-sputtering, using a commercial Cu target together with a Cu-As-S target with material obtained from local resources, specifically from mines in the Portuguese region of the Iberian Pyrite Belt. Raman and x-ray diffraction analysis confirm that the use of two targets results in films with pronounced stoichiometry gradients, suggesting a transition from amorphous CAS compounds to crystalline djurleite (Cu31S16), with the increasing proximity to the Cu target. Resistivity values from 4.7 mΩ.cm to 17.4 Ω.cm are obtained, being the lowest resistive films, those with pronounced sub-bandgap free-carrier absorption. The bandgap values range from 2.20 to 2.65 eV, indicating promising application as wide-bandgap semiconductors in third-generation (e.g., multi-junction) photovoltaic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.