We have previously shown that a mixture of three synthetic peptides (83.1, 55.1, 35.1), corresponding to fragments of the relative molecular mass 83,000 (83K), 55K and 35K Plasmodium falciparum merozoite-specific proteins, induces protection in Aotus triviroatus monkeys experimentally infected with P. falciparum. Here we describe two polymeric synthetic hybrid proteins based on these peptides that delay or suppress the development of parasitaemia in immunized human volunteers.
Synthetic peptides are potential vaccine candidates because they may be able to induce high antibody titres and specific cellular immune responses against native proteins and thus the whole invading organism. In a previous study we showed that immunization with molecules of relative molecular mass (Mr) 155,000 (155K) 83K, 55K and 35K, specific for the late schizont and merozoite stages of Plasmodium falciparum, could elicit either partial or total protection in Aotus trivirgatus monkeys experimentally infected with P. falciparum. Here we have chemically synthesized 18 peptides corresponding to different fragments of these proteins to immunize Aotus trivirgatus monkeys. Some peptides gave partial protection from challenge with P. falciparum parasites, but none provided complete protection individually. A combination of three partially protective peptides gave complete or almost complete protection, however, suggesting that this particular combination of peptides is a good candidate for a malaria vaccine.
StlmmaryDuring feeding, infected mosquitos inject malaria sporozoites into the host circulation. Within minutes, the parasites are found in the liver where they initiate the first stage of malaria infection. All species of malaria sporozoites are uniformly covered by the circumsporozoite protein (CS), which contains a conserved COOH-terminal sequence called region II-plus. We have previously shown that region II-plus is the parasite's hepatocyte-binding ligand and that this ligand binds to heparan sulfate proteoglycans (HSPGs) on the hepatocyte membrane. Using a series of substituted region II-plus peptides, we show here that the downstream basic amino acids as well as the interdispersed hydrophobic residues are required for binding of CS to hepatocyte HSPGs. We also show that this positively charged stretch of amino acids must be aggregated in order to bind to the receptor. On the basis of this information, we have synthesized a multiple antigen peptide that mimics the hepatocyte-binding ligand. This construct inhibits both CS binding to HepG2 cells in vitro as well as CS clearance in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.