The rational syntheses of meso-tetraaryl-3-oxo-2-oxaporphyrins 5, known as porpholactones, via MnO 4 − mediated oxidations of the corresponding meso-tetraaryl-2,3dihydroxychlorins ( 7) is detailed. Since chlorin 7 is prepared from the parent porphyrin 1, this amounts to a 2-step replacement of a pyrrole moiety in 1 by an oxazolone moiety. The stepwise reduction of the porpholactone 5 results in the formation of chlorin analogues, meso-tetraaryl-3-hydroxy-2oxachlorin ( 11) and meso-tetraaryl-2-oxachlorins (12). The reactivity of 11 with respect to nucleophilic substitution by O-, N-, and S-nucleophiles is described. The profound photophysical consequences of the formal replacement of a pyrrole with an oxazolone (porphyrin-like chromophore) or (substituted) oxazole moiety (chlorin-like chromophore with, for the parent oxazolochlorin 12, red-shifted Q x band with enhanced oscillator strengths) are detailed and rationalized on the basis of SAC−CI and MNDO-PSDCI molecular orbital theory calculations. The single crystal X-ray structures of the porpholactones point at a minor steric interaction between the carbonyl oxygen and the flanking phenyl group. The essentially planar structures of all chromophores in all oxidation states prove that the observed optical properties originate from the intrinsic electronic properties of the chromophores and are not subject to conformational modulation.
The synthesis and chiral resolution of free-base and Ni(II) complexes of a number of derivatives of meso-tetraphenylmorpholinochlorins, with and without direct β-carbon-to-o-phenyl linkages to the flanking phenyl groups, is described. The morpholinochlorins, a class of stable chlorin analogues, were synthesized in two to three steps from meso-tetraphenylporphyrin. The conformations and the relative stereostructures of a variety of free-base and Ni(II) complexes of these morpholinochlorins were elucidated by X-ray diffractometry. Steric and stereoelectronic arguments explain the relative stereoarray of the morpholino-substituents, which differ in the free-base and Ni(II) complexes, and in the monoalkoxy, β-carbon-to-o-phenyl linked morpholinochlorins, and the dialkoxy derivatives. The Ni(II) complexes were all found to be severely ruffled whereas the free-base chromophores are more planar. As a result of the helimeric distortion of their porphyrinoid chromophores, the ruffled macrocycles possess a stable inherent element of chirality. Most significantly, resolution of the racemic mixtures was achieved, both by classical methods via diastereomers and by HPLC on a chiral phase. Full CD spectra were recorded and modeled using quantum-chemical computational methods, permitting, for the first time, an assignment of the absolute configurations of the chromophores. The report expands the range of known pyrrole-modified porphyrins. Beyond this, it introduces large chiral porphyrinoid π-systems that exist in the form of two enantiomeric, stereochemically stable helimers that can be resolved. This forms the basis for possible future applications, for example, in molecular-recognition systems or in materials with chiroptic properties.
The ability of meso-tetra(pentafluorophenyl)porpholactone (T(F)PL) and its Pt(II) complex [meso-tetra(pentafluorophenyl)porpholactonato]Pt(II) (T(F)PLPt) to function as optical high pH sensors is described. Under strongly alkaline or high methoxide conditions, their UV-vis spectra undergo dramatic and reversible red-shifts. The dynamic range for the sensor T(F)PLPt in solution is from pH 11.5 to 13.2. Using (1)H, (19)F, and (13)C NMR, UV-vis and IR spectroscopy, mass spectrometry, and the use of model compounds, the molecular origin of this optical shift is deduced to be a nucleophilic attack of OH(-)/MeO(-) on the lactone carbonyl of the chromophore, representing a novel mechanism for porphyrin-based sensors. The sensing compound was solubilized with Cremophor EL for use in aqueous solutions and embedded in polymer matrixes for testing as optical fiber-based optodes and planar sheet optode materials.
Porpholactones are porphyrinoids in which one or more β,β′-bonds of the parent chromophore were replaced by lactone moieties. Accessible to varying degrees by direct and nonselective oxidations of porphyrins, the rational syntheses of all five dilactone isomers along stepwise, controlled, and high-yielding routes via porphyrin → tetrahydroxyisobacteriochlorin metal complexes → isobacteriochlorindilactone metal complexes or porphyrin → tetrahydroxybacteriochlorin → bacteriochlorindilactone (and related) pathways, respectively, are described. A major benefit of these complementary routes over established methods is the simplicity of the isolation of the dilactones because of the reduced number of side products formed. In an alternative approach we report the direct and selective conversion of free base meso-tetrakis(pentafluorophenyl)porphyrin to all isomers of free base isobacteriodilactones using the oxidant cetyltrimethylN+MnO4 –. The solid-state structures of some of the isomers and their precursors are reported, providing data on the conformational modulation induced by the derivatizations. We also rationalize computationally their differing thermodynamic stability and electronic properties. In making new efficient routes toward these dilactone isomers available, we enable the further study of this diverse class of porphyrinoids.
Indaphyrins and indachlorins possess large chiral porphyrinoid π‐systems with particularly long‐wavelength absorption properties. All indaphyrin derivatives, including the indaphyrin MII complexes (M = NiII, CuII, ZnII, and PtII), adopt strongly ruffled conformations incorporating a helimeric twist, thus forming two stereochemically stable helimeric enantiomers. Their degree of ruffling is modulated by the coordination to metal ions or pyrrole ring modifications. Resolution of the racemic mixtures of the helimers of all derivatives was achieved by HPLC on a chiral phase and their absolute stereostructures were assigned. The much altered UV/Vis spectra of the indaphyrin derivatives, when compared to those of porphyrins, were rationalized using excited state calculations. The conformational stability of the conformers toward thermally induced racemization was also shown. The report forms the basis for future applications that exploit the chiral properties of the chromophores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.