Cadherin-23 (CDH23) is an essential component of hair-cell tip links, fine filaments that mediate inner-ear mechanotransduction. The extracellular domain of CDH23 forms about three-fourths of the tip link with 27 extracellular cadherin (EC) repeats that are structurally similar but not identical to each other. Calcium (Ca) coordination at the EC linker regions is key for tip-link elasticity and function. There are ∼116 sites in CDH23 affected by deafness-causing mutations, many of which alter conserved Ca-binding residues. Here we present crystal structures showing 18 CDH23 EC repeats, including the most and least conserved, a fragment carrying disease mutations, and EC repeats with non-canonical Ca-binding motif sequences and unusual secondary structure. Complementary experiments show deafness mutations' effects on stability and affinity for Ca. Additionally, a model of nine contiguous CDH23 EC repeats reveals helicity and potential parallel dimerization faces. Overall, our studies provide detailed structural insight into CDH23 function in mechanotransduction.
The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link–mediated inner-ear sensory perception and elucidate protocadherin-15’s structural and adhesive properties relevant in disease.
(E)-2-(benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles are described as a new class of selective inhibitors of acetylcholinesterase (AChE). The most potent compound in the series exhibited good AChE inhibitory activity (IC50 = 64 µM). Compound 7f was found to be more selective than galanthamine in inhibiting AChE and it showed a moderate selectivity index. Kinetic studies on AChE indicated that a competitive type of inhibition pattern exist for these acrylonitrile derivates. Molecular docking models of the ligand-AChE complexes suggest that compound 7g is located on the periphery of the AChE active site.
Given the broad spectrum of uses of acrylonitrile derivatives as fluorescent probes, AChE inhibitors, and others, it is necessary to find easy, efficient and simple methods to synthesize and diversify these compounds. We report the results of a comparative study of the effects of three techniques on the reactions between heterocyclic aldehydes and 2-(benzo[d]thiazol-2-yl)acetonitrile: stirring; ultrasound coupled to PTC conditions (US-PTC); and MW irradiation (MWI) under solvent and catalyst-free conditions. The effects of conditions on reaction parameters were evaluated and compared in terms of reaction time, yield, purity and outcomes. The US-PTC method is more efficient than the MWI and conventional methods. The reaction times were considerably shorter, with high yields (>90%) and good levels of purity. In addition, X-ray diffraction analysis and quantum mechanical calculations, at the level of density functional theory (DFT), ratify obtaining acrylonitrile isomers with E configurations. The crystal structure of 3c is stabilized by weak C-Ho⋯N intermolecular interactions (Ho⋯NC=2.45 Å, Co⋯NC=3.348(3) Å, Ho⋯NC=162°), forming centrosymmetric ring R2(2) (20) along the crystallographic a axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.