Mouse models of retinal degeneration are useful tools to study therapeutic approaches for patients affected by hereditary retinal dystrophies. We have studied degeneration in the rd10 mice both by immunocytochemistry and TUNEL-labeling of retinal cells, and through electrophysiological recordings. The cell degeneration in the retina of rd10 mice produced appreciable morphological changes in rod and cone cells by P20. Retinal cell death is clearly observed in the central retina and it peaked at P25 when there were 800 TUNEL-positive cells per mm(2). In the central retina, only one row of photoreceptors remained in the outer nuclear layer by P40 and there was a remarkable deterioration of bipolar cell dendrites postsynaptic to photoreceptors. The axon terminals of bipolar cells also underwent atrophy and the inner retina was subject to further changes, including a reduction and disorganization of AII amacrine cell population. Glutamate sensitivity was tested in rod bipolar cells with the single cell patch-clamp technique in slice preparations, although at P60 no significant differences were observed with age-matched controls. Thus, we conclude that rod and cone degeneration in the rd10 mouse model is followed by deterioration of their postsynaptic cells and the cells in the inner retina. However, the functional preservation of receptors for photoreceptor transmission in bipolar cells may open new therapeutic possibilities.
Summary
Aging contributes to the appearance of several retinopathies and is the largest risk factor for aged-related macular degeneration, major cause of blindness in the elderly population. Accumulation of undegraded material as lipofuscin represents a hallmark in many pathologies of the aged eye. Autophagy is a highly conserved intracellular degradative pathway that plays a critical role in the removal of damaged cell components to maintain the cellular homeostasis. A decrease in autophagic activity with age observed in many tissues has been proposed to contribute to the aggravation of age-related diseases. However, the participation of different autophagic pathways to the retina physiopathology remains unknown. Here we describe a marked reduction in macroautophagic activity in the retina with age, which coincides with an increase in chaperone-mediated autophagy (CMA). This increase in CMA is also observed during retinal neurodegeneration in the Atg5flox/flox; nestin-Cre mice, a mouse model with downregulation of macroautophagy in neuronal precursors. In contrast to other cell types, this autophagic cross-talk in retinal cells is not bi-directional and CMA inhibition renders cone photoreceptor very sensitive to stress. Temporal and cell-type specific differences in the balance between autophagic pathways may be responsible for the specific pattern of visual loss that occurs with aging. Our results show for the first time a cross-talk of different lysosomal proteolytic systems in the retina during normal aging and may help the development of new therapeutic intervention for age-dependent retinal diseases.
Manometry and dynamometry are more reliable tools than vaginal palpation for the assessment of PFM strength in women with pelvic floor disorders, especially when different raters are involved. The different PFM strength measures used clinically are moderately correlated; whereas, PFM activation recorded using transperineal sEMG is only weakly correlated with PFM strength. Results from perineal sEMG should not be interpreted in the context of reporting PFM strength.
Effects of L-glutamate (Glu), the neurotransmitter released by photoreceptors, on isolated cat bipolar cells were examined. Membrane currents of bipolar cells were recorded by the patch-clamp technique in a conventional whole-cell recording configuration using pipettes containing 1 mM cGMP, which has been known to activate a cationic current sensitive to Glu in ON-type bipolar cells. ON-type bipolar cells (depolarized by light in in situ) and OFF-type bipolar cells (hyperpolarized by light) were identified by their response polarity to Glu. When the whole-cell configuration was established, ON-type bipolar cells showed a steady inward current which was suppressed by Glu, consistent with the response polarity observed in in situ recordings. In contrast, OFF-type cells did not show a steady current during the recordings. However, they responded to Glu with an increase in cationic conductance. Among recorded cells, rod-driven bipolar cells were identified by their immunoreactivity to anti-protein kinase C (PKC-IR) antibody. Examination of PKC-IR revealed that ON-type bipolar cells included both rod- and cone-driven bipolar cells, while OFF-type cells were all cone-driven bipolar cells. The cGMP-activated current observed in ON-type cells was accompanied by a change in the current fluctuation due to the opening and closing of underlying channels. Fluctuation analysis gave a unitary conductance value of 13 pS. In half of the cells examined, maximum open probability reached almost 100%. The cGMP- activated channel in bipolar cells seems novel, fundamentally different from those found in photoreceptor cells or olfactory receptor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.