Using the stacked crystal filter (SCF) concept, a coupled resonator filter (CRF) can be interpreted as a device in which 2 piezoresonators are stacked on top of each other in such a way that a certain degree of acoustic interaction occurs. The work presented in this paper reports a novel all-electrical model for the CRF. The model associates acoustical coupling with an equivalent electrical coupling between resonators. The resulting equivalent circuit makes it possible to apply classical filter synthesis techniques directly based on the coupling control between resonators. It complements with a synthesis approach the analysis approach of the Mason model.
This paper investigates the possibility of using star-shaped rotating wheels with deliberated geometries which provides unique micro-Doppler signature. Beyond the signature provided by the rotation rate of the target, additional information related with a particular target can be obtained taking advantage of specific and unique modulation waveforms. This feature can be very useful to increase detectability and classification and the approach can be used to generate warning signals in applications such automotive radars. Different star-shaped wheels with particular geometries have been designed demonstrating different reflection characteristics and modulation waveforms. The signature of these rotating star-shaped wheels has been measured in an anechoic chamber using a general purpose 24 GHz FMCW radar platform. As a detection method, an algorithm based on the derivative of the cross-correlation is proposed which validates the proposed approach.
Abstract-This work proposes the use of Non-Bianisotropic Split Ring Resonators (NB-SRRs) as building blocks for dual-band response filters. Design parameters will be evaluated in order to characterize coupling mechanisms for both the particle and filter structure. A ready-to-use dual-band filter for a multiconstellation Galileo/GPS global positioning receiver is manufactured in order to validate and test the proposed design. The device transmission response measurement agrees with both circuital and electromagnetic simulations, as well as with theoretical insertion losses, which are 2.4 dB and 3.5 dB at center passbands for L 5 and L 1 bands respectively.
Abstract-This paper aims to complete a published systematic methodology for the design of ladder BAW filters in order to include the effect of the electrodes, since infinitely thin electrodes are assumed in this design methodology. The new procedure is validated against the work of other authors, finding very good agreement between results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.