Stereological methods were employed to estimate the volume and neuron numbers of the rat dorsal column nuclei (DCN). These methods were applied to Nissl-stained sections from control animals and cases that received injections of horseradish peroxidase in the thalamus, the cerebellum, or the spinal cord. Additional cases received combinations of fluorescent tracers in the same structures, to examine whether some of the retrogradely labeled neurons sent collaterals to different targets. The mean volume of the DCN is 0.81 mm(3) (range 0.65-1.10 mm(3)), of which 3%, 39%, and 59% correspond, respectively, to the nucleus of Bischoff (Bi), the gracile (Gr), and the cuneate (Cu) nuclei. Within Cu, the middle division (CuM) is the largest (42%), followed by the rostral (CuR; 36%) and caudal (CuC; 22%) divisions. The mean total number of neurons in the DCN is 16,000 (range 12,400-19,500), of which 2.4%, 34.0% and 63.6% correspond, respectively, to Bi, Gr, and Cu. Within Cu, CuM contains 48% of all neurons, and 27% correspond to CuR and 25% to CuC. Interanimal variability is moderate for the whole DCN and Cu but increases when individual nuclei are considered. About 80% of DCN neurons project to the thalamus, 3% to the spinal cord, and 7% to the cerebellum. Thalamic-projecting cells are more numerous in CuM and Gr (83%), and relatively less common in Bi and CuC (72-74%). Most of the DCN neurons projecting to the spinal cord appear in CuC and CuM. Two-thirds of the neurons projecting to the cerebellum are located in CuR, 20% in CuM, and 15% in Gr. A small fraction of neurons projects simultaneously to spinal cord and thalamus.
The volume, total neuron number, and number of GABA- and glycine-expressing neurons in the sensory trigeminal nuclei of the adult rat were estimated by stereological methods. The mean volume is 1.38+/-0.13 mm3 (mean+/-SD) for the principal nucleus (Vp), 1.59+/-0.06 for the n. oralis (Vo), 2.63+/-0.34 for the n. interpolaris (Vip), and 3.73+/-0.11 for the n. caudalis (Vc). The total neuron numbers are 31,900+/-2,200 (Vp), 21,100+/-3,300 (Vo), 61,600+/-8,300 (Vip), and 159,100+/-25,300 (Vc). Immunoreactive (-ir) neurons were classified as strongly stained or weakly stained, depending on qualitative criteria, cross-checked by a densitometric analysis. GABA-ir cells are most abundant in Vc, in an increasing rostrocaudal gradient within the nucleus. Lower densities are found in Vip and Vp. The mean total number of strongly labeled GABA-ir neurons ranges between 1,800 in Vp to 7,800 in Vip and 22,900 in Vc, and varies notably between subjects. Glycine-ir neurons are more numerous and display more homogeneous densities in all nuclei. Strongly labeled Gly-ir cells predominate in all nuclei, their total number ranging between 9,400 in Vp to 24,300 in Vip and 34,200 in Vc. A substantial fraction of immunolabeled neurons in all nuclei coexpress GABA and glycine. In general, all neurons strongly immunoreactive for GABA are small, while weakly GABA-ir cells which coexpress Gly are larger. In Vc, one-third of all neurons are immunoreactive: 16.6% of them are single-labeled for GABA and 31.6% are single-labeled for glycine. The remaining 51.8% express GABA and glycine in different combinations, with those showing strong double labeling accounting for 22.6%.
These results suggest that zonisamide is effective and well tolerated for migraine prevention in patients refractory to topiramate. With the exception of the inhibition of T-type calcium channels by zonisamide, its mechanisms of action seem to be very similar to topiramate's. We suggest the potential role of these channels in the pathophysiology of migraine.
The innocuous transcutaneous stimulation of nerves supplying the outer ear has been demonstrated to be as effective as the invasive direct stimulation of the vagus nerve for the treatment of some neurological and nonneurological disturbances. Thus, the precise knowledge of external ear innervation is of maximal interest for the design of transcutaneous auricular nerve stimulation devices. We analyzed eleven outer ears, and the innervation was assessed by Masson's trichrome staining, immunohistochemistry, or immunofluorescence (neurofilaments, S100 protein, and myelin-basic protein). In both the cavum conchae and the auditory canal, nerve profiles were identified between the cartilage and the skin and out of the cartilage. The density of nerves and of myelinated nerve fibers was higher out of the cartilage and in the auditory canal with respect to the cavum conchae. Moreover, the nerves were more numerous in the superior and posterior-inferior than in the anterior-inferior segments of the auditory canal. The present study established a precise nerve map of the human cavum conchae and the cartilaginous segment of the auditory canal demonstrating regional differences in the pattern of innervation of the human outer ear. These results may provide additional neuroanatomical basis for the accurate design of auricular transcutaneous nerve stimulation devices.
Impulse control disorders (ICDs) are a set of behaviours that take place in a subgroup of patients with Parkinson's disease (PD). Although reduction or switch of dopamine agonists or decrease of levodopa are the common treatment, this does not always improve the compulsive behaviour. Zonisamide (ZNS) has proved effective for motor symptoms in PD and it may be also useful in the field of ICDs. The aim of our study is to evaluate the safety and efficacy of ZNS in PD patients with ICDs who did not improve following a reduction of either levodopa or dopamine agonists. Fifteen patients were initiated on 25 mg/day ZNS dosage, which was titrated to 200 mg/day, as tolerated. Severity of the behaviours was assessed by means of the Clinical Global Impression and the Barratt Impulsiveness Scale, while motor impairment was assessed by means of the Unified Parkinson's Disease Rating Scale (UPDRS). Demographic data, medication dose, treatment duration and adverse events were also collected and analyzed. There was a marked reduction in the severity of impulsive behaviours and global impulsiveness (mean change from baseline -5.8 to -4.8, respectively). UPDRS changed only marginally. ZNS was generally well tolerated. Our study suggests that ZNS may be effective for ICDs in PD. The lack of studies with other medications to treat these behaviours in PD and the potential beneficial effects of ZNS for motor complications make this drug important in the treatment of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.