Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and stimulates growth and other activities of ovarian cancer cells in vitro. Tissue hypoxia is a critical factor for tumor aggressiveness and metastasis in cancers. We tested whether the ascites of ovarian cancer is hypoxic and whether hypoxia influences the effects of LPA on ovarian cancer cells. We found that ovarian ascitic fluids were hypoxic in vivo. Enhanced cellular responsiveness to LPA, including migration and/or invasion of ovarian cancer cells, was observed under hypoxic conditions. This enhancement could be completely blocked by geldanamycin or a small interfering RNA targeting hypoxia-inducible factor 1A (HIF1A). LPA-induced cell migration required cytosolic phospholipase A 2 (cPLA 2 ) and LPA stimulates cPLA 2 phosphorylation in a HIF1A-dependent manner under hypoxia conditions. Furthermore, we show for the first time that exogenous LPA enhances tumor metastasis in an orthotopic ovarian cancer model and HIFA expression in tumors. 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (an inhibitor of the heat shock protein 90) effectively blocked LPA-induced tumor metastasis in vivo. Together, our data indicate that hypoxic conditions are likely to be pathologically important for ovarian cancer development. HIF1A plays a critical role in enhancing and/or sensitizing the role of LPA on cell migration and invasion under hypoxic conditions, where cPLA 2 is required for LPAinduced cell migration. (Cancer Res 2006; 66(16): 7983-90)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.