SummaryAccurately predicting an outcome requires that animals learn supporting and conflicting evidence from sequential experience. In mammals and invertebrates, learned fear responses can be suppressed by experiencing predictive cues without punishment, a process called memory extinction. Here, we show that extinction of aversive memories in Drosophila requires specific dopaminergic neurons, which indicate that omission of punishment is remembered as a positive experience. Functional imaging revealed co-existence of intracellular calcium traces in different places in the mushroom body output neuron network for both the original aversive memory and a new appetitive extinction memory. Light and ultrastructural anatomy are consistent with parallel competing memories being combined within mushroom body output neurons that direct avoidance. Indeed, extinction-evoked plasticity in a pair of these neurons neutralizes the potentiated odor response imposed in the network by aversive learning. Therefore, flies track the accuracy of learned expectations by accumulating and integrating memories of conflicting events.
Highlights d Spaced training forms complementary long-term aversive and safety memories d Safety memory is protein-synthesis-dependent long-term memory d Safety memory acquisition requires repetition, order, and spacing of trials d Specific dopaminergic neurons reinforce the delayed recognition of safety
Decoding the neural basis of behaviour requires analysing how the nervous system is organised and how the temporal structure of motor patterns emerges from its activity. The stereotypical patterns of the calling song behaviour of male crickets, which consists of chirps and pulses, is an ideal model to study this question. We applied selective lesions to the abdominal nervous system of field crickets and performed long-term acoustic recordings of the songs. Specific lesions to connectives or ganglia abolish singing or reliably alter the temporal features of the chirps and pulses. Singing motor control appears to be organised in a modular and hierarchically fashion, where more posterior ganglia control the timing of the chirp pattern and structure and anterior ganglia the timing of the pulses. This modular organisation may provide the substrate for song variants underlying calling, courtship and rivalry behaviour and for the species-specific song patterns in extant crickets.
We present neutral hydrogen (H i) absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348–630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP H i spectrum shows a maximum negative radial velocity (with respect to the local standard of rest) of −31 ± 4 km s−1 for MAXI J1348–630, as compared to −50 ± 4 km s−1 for a stacked spectrum of several nearby extragalactic sources. This implies a most probable distance of $2.2^{+0.5}_{-0.6}$ kpc for MAXI J1348–630, and a strong upper limit of the tangent point distance at 5.3 ± 0.1 kpc. Our preferred distance implies that MAXI J1348–630 reached 17 ± 10 per cent of the Eddington luminosity at the peak of its outburst, and that the source transited from the soft to the hard X-ray spectral state at 2.5 ± 1.5 per cent of the Eddington luminosity. The MeerKAT H i spectrum of MAXI J1348–630 (obtained from the older, low-resolution 4k mode) is consistent with the re-binned ASKAP spectrum, highlighting the potential of the eventual capabilities of MeerKAT for XRB spectral line studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.