Solanum nigrum L. plants were exposed for 28 days to 100 and 200 μmol/L copper (Cu) in a hydroponic system to analyze the antioxidant defense response. A dose‐dependent reduction in growth (fresh mass of root and shoot, shoot height, and root elongation) with increasing concentration of Cu was observed, whereas Cu treatments did funt affect total chlorophyll and carotefunids content. An enhanced lipid peroxidation, in terms of malondialdehyde (MDA) content, was quantified in shoots when the plants were subjected to the highest Cu level, while in roots MDA levels showed a dose‐dependent increase along the increasing Cu concentrations applied. An increase of proline in roots of plants exposed to 200 μmol/L Cu was found. Antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) did funt show significant changes with respect to control, in both roots and shoots, despite mRNA‐specific accumulations varied between Cu levels and organs. Ascorbate peroxidase (APX) was negatively affected in shoots by the highest Cu level. Gene expression of the subtype 2d metallothioneins (MT) revealed to be Cu‐enhanced throughout the plant body and correlated with Cu tissue levels, with the other MT1 and MT2 gene members downregulated in roots and upregulated in shoots, contributing more as antioxidants in the latter organs than in Cu homeostasis. MT3s are not involved in Cu homeostasis and phytochelatin (PC) production was enhanced in roots of plants exposed to 200 μmol/L Cu, contributing to a higher Cu accumulation in these organs.
Plant diseases caused by fungal pathogens are responsible for major crop losses worldwide, with a significant socio-economic impact on the life of millions of people who depend on agriculture-exclusive economy. This is the case of the
Witches’ Broom Disease
(WBD) affecting cacao plant and fruit in South and Central America. The severity and extent of this disease is prospected to impact the growing global chocolate market in a few decades. WBD is caused by the basidiomycete fungus
Moniliophthora perniciosa
. The methods used to contain the fungus mainly rely on chemical fungicides, such as copper-based compounds or azoles. Not only are these highly ineffective, but also their utilization is increasingly restricted by the cacao industry, in part because it promotes fungal resistance, in part related to consumers’ health concerns and environmental awareness. Therefore, the disease is being currently tentatively controlled through phytosanitary pruning, although the full removal of infected plant material is impossible and the fungus maintains persistent inoculum in the soil, or using an endophytic fungal parasite of
Moniliophthora perniciosa
which production is not sustainable. The growth of
Moniliophthora perniciosa
was reported as being antagonized
in vitro
by some yeasts, which suggests that they could be used as biological control agents, suppressing the fungus multiplication and containing its spread. Concurrently, some yeast-based products are used in the protection of fruits from postharvest fungal spoilage, and the extension of diverse food products shelf-life. These successful applications suggest that yeasts can be regarded a serious alternative also in the pre-harvest management of WBD and other fungal plant diseases. Yeasts’ GRAS (Generally Recognized as Safe) nature adds to their appropriateness for field application, not raising major ecological concerns as do the present more aggressive approaches. Importantly, mitigating WBD, in a sustainable manner, would predictably have a high socioeconomic impact, contributing to diminish poverty in the cacao-producing rural communities severely affected by the disease. This review discusses the importance/advantages and the challenges that such a strategy would have for WBD containment, and presents the available information on the molecular and cellular mechanisms underlying fungi antagonism by yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.