The predicted mean vote (PMV) is the most widely used model around the world to assess thermal comfort in indoor environments. The year 2020 marks the 50th anniversary of the PMV model and also the year in which the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic. In this context, hospital environments and health professionals are at the center of attention, and a good indoor environment for those professionals to develop their activities is essential. Thus, considering the PMV model and focusing on hospital environments, this study performed a literature review of studies published between 1968 and August 2020. The research identified 153 papers on thermal comfort and its application in hospitals, health centers, and elderly centers. Specific inclusion and exclusion criteria were adopted to determine the most relevant studies for the four research questions proposed in this study. After applying the exclusion criteria, 62 studies were included in order to identify their main characteristics. In the universe of the 62 studies, this review identified 24 studies that applied the PMV model and 12 where there was a comparison of PMV and the thermal sensation votes (TSV) reported by people. The main findings of this research are: (i) A good thermal environment for professionals and patients is important, and more studies are needed; (ii) there are little explored topics, such as productivity related to thermal comfort in hospital environments; (iii) in addition to thermal comfort, other indoor environmental quality (IEQ) parameters have also been evaluated, such as indoor air quality (IAQ); (iv): the COVID-19 pandemic has highlighted how the quality of indoor spaces is important in order to ensure occupant’s health.
In order to maintain thermal comfort and preserve indoor environmental quality, people use heating, ventilation and air-conditioning (HVAC) systems inside buildings. However, buildings must be prepared not only to provide adequate thermal comfort to their occupants but also to align strategies that enable better energy performance. Thus, this work aimed to establish thermal comfort zones (TCZ) through different characterization methods of thermally dissatisfied people. Responses were collected from 481 students, through the application of questionnaires in classrooms, during the Brazilian winter of 2019. Three methods for determining the actual percentage of dissatisfied (APD) were adopted, which generated three different equations, namely: APD_1; APD_2 and APD_3, based on the original Predicted Percentage of Dissatisfied (PPD) equation. By using the probit model, three TCZ were calculated: 17.73–22.4 °C (APD_1); 20.71–20.93 °C (APD_2) and 17.89–24.83 °C (APD_3). In addition, a comfort zone based on the linear regression between the thermal sensation votes and the operative temperature was determined (18.77–22.69 °C). All thermal comfort zones resulting from this work have colder temperatures than that indicated by the American Society of Heating, Refrigerating and Air-Conditioning Engineers - ASHRAE (2017) of 23–26 °C for the winter, showing the potential for energy savings from the adoption of this type of strategy, while maintaining thermal comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.