Spatial approximations simplify the geometric shape of complex spatial objects. Hence, they have been employed to alleviate the evaluation of costly computational geometric algorithms when processing spatial queries. For instance, spatial index structures employ them to organize spatial objects in tree structures (e.g., the R-tree). We report experiments considering two real datasets composed of ∼1.5 million regions and ∼2.7 million lines. The experiments confirm the performance benefits of spatial approximations and spatial index structures. However, we also identify that a second processing step is needed to deliver the final answer and often requires higher processing time than the step that uses index structures only. It leads to the interest in studying how spatial approximations can be efficiently used to improve both steps. This paper presents a systematic review on this topic. As a result, we provide an overview and comparison of existing approaches that propose, evaluate, or make use of spatial approximations to optimize the performance of spatial queries. Further, we characterize them and discuss some future trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.