Research about deep learning applied in object detection tasks in LiDAR data has been massively widespread in recent years, achieving notable developments, namely in improving precision and inference speed performances. These improvements have been facilitated by powerful GPU servers, taking advantage of their capacity to train the networks in reasonable periods and their parallel architecture that allows for high performance and real-time inference. However, these features are limited in autonomous driving due to space, power capacity, and inference time constraints, and onboard devices are not as powerful as their counterparts used for training. This paper investigates the use of a deep learning-based method in edge devices for onboard real-time inference that is power-effective and low in terms of space-constrained demand. A methodology is proposed for deploying high-end GPU-specific models in edge devices for onboard inference, consisting of a two-folder flow: study model hyperparameters’ implications in meeting application requirements; and compression of the network for meeting the board resource limitations. A hybrid FPGA-CPU board is proposed as an effective onboard inference solution by comparing its performance in the KITTI dataset with computer performances. The achieved accuracy is comparable to the PC-based deep learning method with a plus that it is more effective for real-time inference, power limited and space-constrained purposes.
Recently released research about deep learning applications related to perception for autonomous driving focuses heavily on the usage of LiDAR point cloud data as input for the neural networks, highlighting the importance of LiDAR technology in the field of Autonomous Driving (AD). In this sense, a great percentage of the vehicle platforms used to create the datasets released for the development of these neural networks, as well as some AD commercial solutions available on the market, heavily invest in an array of sensors, including a large number of sensors as well as several sensor modalities. However, these costs create a barrier to entry for low-cost solutions for the performance of critical perception tasks such as Object Detection and SLAM. This paper explores current vehicle platforms and proposes a low-cost, LiDAR-based test vehicle platform capable of running critical perception tasks (Object Detection and SLAM) in real time. Additionally, we propose the creation of a deep learning-based inference model for Object Detection deployed in a resource-constrained device, as well as a graph-based SLAM implementation, providing important considerations, explored while taking into account the real-time processing requirement and presenting relevant results demonstrating the usability of the developed work in the context of the proposed low-cost platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.