There has been an increasing interest in semisupervised learning in the recent years because of the great number of datasets with a large number of unlabeled data but only a few labeled samples. Semi-supervised learning algorithms can work with both types of data, combining them to obtain better performance for both clustering and classification. Also, these datasets commonly have a high number of dimensions. This article presents a new semi-supervised method based on selforganizing maps (SOMs) for clustering and classification, called Semi-Supervised Self-Organizing Map (SS-SOM). The method can dynamically switch between supervised and unsupervised learning during the training according to the availability of the class labels for each pattern. Our results show that the SS-SOM outperforms other semi-supervised methods in conditions in which there is a low amount of labeled samples, also achieving good results when all samples are labeled.
Purpose: to present a new application for mobile devices, referred to as Desembaralhando, for intervention in the problem of dyslexic children mirror writring. Methods: the development of the application is the result of a set of clinical and speech therapy information and experiences, which points out frequency of letter mirroring as a challenging problem in children with dyslexia. The application, developed in the light of the multisensory approach, was created by a multidisciplinary team of computer scientists, a game designer and a speech therapist, in order to meet users requirements, such as appropriate fonts and colors. Results: the activities stimulate phonological awareness skills from the association between images and words, audio aids, as well as an original function that is the rotational movement of letters b/d and a/e, which facilitates the perception of the visual layout of the letters. Conclusions: guidelines such as the choice of typography and interface colors appropriate to dyslexic children are used to favor intervention, in order to minimize the difficulties of these children regarding letters mirroring.
When working with decomposition-based algorithms, an appropriate set of weights might improve quality of the final solution. A set of uniformly distributed weights usually leads to well-distributed solutions on a Pareto front. However, there are two main difficulties with this approach. Firstly, it may fail depending on the problem geometry. Secondly, the population size becomes not flexible as the number of objectives increases. In this paper, we propose the MOEA/D with Uniformly Randomly Adaptive Weights (MOEA/D-URAW) which uses the Uniformly Randomly method as an approach to subproblems generation, allowing a flexible population size even when working with many objective problems. During the evolutionary process, MOEA/D-URAW adds and removes subproblems as a function of the sparsity level of the population. Moreover, instead of requiring assumptions about the Pareto front shape, our method adapts its weights to the shape of the problem during the evolutionary process. Experimental results using WFG41-48 problem classes, with different Pareto front shapes, shows that the present method presents better or equal results in 77.5% of the problems evaluated from 2 to 6 objectives when compared with state-of-the-art methods in the literature.
Nowadays, with the advance of technology, there is an increasing amount of unstructured data being generated every day. However, it is a painful job to label and organize it. Labeling is an expensive, time-consuming, and difficult task. It is usually done manually, which collaborates with the incorporation of noise and errors to the data. Hence, it is of great importance to developing intelligent models that can benefit from both labeled and unlabeled data. Currently, works on unsupervised and semi-supervised learning are still being overshadowed by the successes of purely supervised learning. However, it is expected that they become far more important in the longer term. This article presents a semi-supervised model, called Batch Semi-Supervised Self-Organizing Map (Batch SS-SOM), which is an extension of a SOM incorporating some advances that came with the rise of Deep Learning, such as batch training. The results show that Batch SS-SOM is a good option for semisupervised classification and clustering. It performs well in terms of accuracy and clustering error, even with a small number of labeled samples, as well as when presented to unsupervised data, and shows competitive results in transfer learning scenarios in traditional image classification benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.