The outbreak of COVID-19 has created an unprecedent global crisis. While the polymerase chain reaction (PCR) is the gold standard method for detecting active SARS-CoV-2 infection, alternative high-throughput diagnostic tests are of a significant value to meet universal testing demands. Here, we describe a new design of the MasSpec Pen technology integrated to electrospray ionization (ESI) for direct analysis of clinical swabs and investigate its use for COVID-19 screening. The redesigned MasSpec Pen system incorporates a disposable sampling device refined for uniform and efficient analysis of swab tips via liquid extraction directly coupled to an ESI source. Using this system, we analyzed nasopharyngeal swabs from 244 individuals including symptomatic COVID-19 positive, symptomatic negative, and asymptomatic negative individuals, enabling rapid detection of rich lipid profiles. Two statistical classifiers were generated based on the lipid information acquired. Classifier 1 was built to distinguish symptomatic PCR-positive from asymptomatic PCR-negative individuals, yielding a cross-validation accuracy of 83.5%, sensitivity of 76.6%, and specificity of 86.6%, and validation set accuracy of 89.6%, sensitivity of 100%, and specificity of 85.3%. Classifier 2 was built to distinguish symptomatic PCR-positive patients from negative individuals including symptomatic PCR-negative patients with moderate to severe symptoms and asymptomatic individuals, yielding a cross-validation accuracy of 78.4%, specificity of 77.21%, and sensitivity of 81.8%. Collectively, this study suggests that the lipid profiles detected directly from nasopharyngeal swabs using MasSpec Pen-ESI mass spectrometry (MS) allow fast (under a minute) screening of the COVID-19 disease using minimal operating steps and no specialized reagents, thus representing a promising alternative high-throughput method for screening of COVID-19.
The COVID-19 pandemic boosted the development of diagnostic tests to meet patient needs and provide accurate, sensitive, and fast disease detection. Despite rapid advancements, limitations related to turnaround time, varying performance metrics due to different sampling sites, illness duration, co-infections, and the need for particular reagents still exist. As an alternative diagnostic test, we present urine analysis through flow-injection–tandem mass spectrometry (FIA-MS/MS) as a powerful approach for COVID-19 diagnosis, targeting the detection of amino acids and acylcarnitines. We adapted a method that is widely used for newborn screening tests on dried blood for urine samples in order to detect metabolites related to COVID-19 infection. We analyzed samples from 246 volunteers with diagnostic confirmation via PCR. Urine samples were self-collected, diluted, and analyzed with a run time of 4 min. A Lasso statistical classifier was built using 75/25% data for training/validation sets and achieved high diagnostic performances: 97/90% sensitivity, 95/100% specificity, and 95/97.2% accuracy. Additionally, we predicted on two withheld sets composed of suspected hospitalized/symptomatic COVID-19-PCR negative patients and patients out of the optimal time-frame collection for PCR diagnosis, with promising results. Altogether, we show that the benchmarked FIA-MS/MS method is promising for COVID-19 screening and diagnosis, and is also potentially useful after the peak viral load has passed.
Neoadjuvant chemotherapy (NACT) is offered to patients with operable or inoperable breast cancer (BC) to downstage the disease. Clinical responses to NACT may vary depending on a few known clinical and biological features, but the diversity of responses to NACT is not fully understood. In this study, 80 women had their metabolite profiles of pre-treatment sera analyzed for potential NACT response biomarker candidates in combination with immunohistochemical parameters using Nuclear Magnetic Resonance (NMR). Sixty-four percent of the patients were resistant to chemotherapy. NMR, hormonal receptors (HR), human epidermal growth factor receptor 2 (HER2), and the nuclear protein Ki67 were combined through machine learning (ML) to predict the response to NACT. Metabolites such as leucine, formate, valine, and proline, along with hormone receptor status, were discriminants of response to NACT. The glyoxylate and dicarboxylate metabolism was found to be involved in the resistance to NACT. We obtained an accuracy in excess of 80% for the prediction of response to NACT combining metabolomic and tumor profile data. Our results suggest that NMR data can substantially enhance the prediction of response to NACT when used in combination with already known response prediction factors.
Rivaroxaban is an anticoagulant (orally active direct Xa inhibitor) considered to reduce the risk of stroke and systemic embolism and treat deep vein thrombosis, pulmonary embolism, and other cardiovascular complications. Bioanalytical methods for rivaroxaban quantification in plasma are necessary for application in pharmacokinetic studies, as well as in drug therapeutic monitoring. In this work, we developed and validated a sensitive bioanalytical method using LC–MS/MS for rivaroxaban quantification in human plasma using an one‐step liquid–liquid extraction. The linear concentration range was 1–600 ng/mL. The bioanalytical method was also applied to pharmacokinetic studies in healthy volunteers under fasting and fed conditions. The results demonstrated that the method is rapid, sensitive, and adequate for application in pharmacokinetic studies.
Progenesis QI (PQI) is a multiplatform bioinformatics tool that facilitates the identification workflow for metabolomics experiments. PQI uses fragmentation data provided by MassBank of North America (MoNA) libraries, among others, for metabolite annotation. However, PQI does not officially support MoNA libraries and other libraries based on structure-data files (.sdf). This paper describes the development and application of a software named MoNA to Progenesis QI Library Converter, allowing PQI and MoNA by correcting the fragmentation data of the library for Progenesis readability. We evaluated several public experimental datasets, including human plasma, plant extracts, cultured cells, bacteria, rat serum, and rat hippocampus. The results showed that it is mandatory to proceed with file conversion of each library to allow PQI to access fragmentation information from .msp (main spectra profile) files. This step is highly recommended to improve the identification level of the metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.