Many definitions and delineation methods exist for identifying flash droughts (FDs), which are events of rapid and unusual large depletion of root-zone soil moisture, in comparison to average moisture conditions, due to climatic compound conditions over a short period of several weeks. Six FD identification methods were compared to analyse their functioning using data from several experimental cropland sites across Central Europe. Co- and misidentification of the FD time series were assessed using confusion and synchronicity metrics on a local scale. Even though a large degree of synchronicity of individual FD events was observed, some divergence in drought periods was detected, which was related to four intrinsic differences in the underlying FD definitions: (1) type of critical variable; (2) velocity of drought intensification; (3) pre-set threshold values for final depletion and/or (4) minimum length of the duration of FDs. To balance the strengths and weaknesses of those methods that are not based on soil moisture, we suggest using an ensemble approach for event identification, which is validated in this study for the temperate central European region. In doing so, the current unclearly defined sub-types of FDs can be detected, regardless of the different combinations of compound drivers and differences in intensification dynamics. All methods were implemented in an R package and are available as a Shiny app for the public.
Abstract. Gullies lead to land degradation and desertification as well as increasing environmental and societal threats, especially in arid and semiarid regions. Despite this fact, there is a lack of related research initiatives. In an effort to better understand soil loss in these systems, we studied small permanent gullies, which are a recurrent problem in the Brazilian northeastern semiarid region. The increase in sediment connectivity and the reduction of soil moisture, among other deleterious consequences, endanger this desertification-prone region and reduce its capacity to support life and economic activities. Thus, we propose a model to simulate gully-erosion dynamics, which is derived from the existing physically based models of Foster and Lane (1983) and Sidorchuk (1999). The models were adapted so as to simulate long-term erosion. A threshold area shows the scale dependency of gully-erosion internal processes (bed scouring and wall erosion). To validate the model, we used three gullies that were over 6 decades old in an agricultural basin in the Brazilian state of Ceará. The geometry of the channels was assessed using an unmanned aerial vehicle and the structure from motion technique. Laboratory analyses were performed to obtain soil properties. Local and regional rainfall data were gauged to obtain sub-daily rainfall intensities. The threshold value (cross-section area of 2 m2) characterizes when erosion in the walls, due to loss of stability, becomes more significant than sediment detachment in the wet perimeter. The 30 min intensity can be used when no complete hydrographs from rainfall are available. Our model could satisfactorily simulate the gully-channel cross-section area growth over time, yielding a Nash–Sutcliffe efficiency of 0.85 and an R2 value of 0.94.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.