Machine learning (ML) algorithms can be used to predict wood volume in a faster and more accurate way, providing reliable answers in forest inventories. The objective of this work was to evaluate the performance of different ML techniques to predict the volume of eucalyptus wood, using diameter at breast height (DBH) and total height (Ht) as input variables, obtained by measuring DBH and Ht of 72 trees of six eucalyptus species (Eucalyptus camaldulensis, E. uroplylla, E. saligna, E. grandis, E. urograndis, and Corymbria citriodora). The trees were cut down in two different epochs, rendering 48 samples at 24 months and 24 samples at 48 months, and the volume of each tree was measured using the Smailian method. This research explores five machine learning models, namely artificial neural networks (ANN), K-nearest neighbor (KNN), multiple linear regression (LR), random forest (RF) and support vector machine (SVM), to estimate the volume of eucalyptus wood using DBH and Ht. Artificial neural networks achieved higher correlations between observed and estimated wood volume values. However, the RF outperformed all models by providing lower MAE and higher correlations between observed and estimated wood volume values. Therefore, RF is the most accurate for predicting wood volume in eucalyptus species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.